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Foreword
At present, the expansion of tetherless communications is a technological

trend surpassed perhaps only by the explosive growth of the Internet. Wireless
systems are being deployed today mainly for telephony, satisfying the indus-
trialized nations’ appetite for talk-on-the-go, and providing much-needed
communications infrastructure in developing countries. The desire for wire-
less access to the Internet is starting to add fuel to the growth of tetherless
communications. Indeed, the synergy of wireless and Internet technologies
will lead to a host of exciting new applications, some of which are not yet
envisioned.

Future-generation wireless systems will achieve capacities much higher
than the systems of today by incorporating myriad improvements. These inno-
vations include transmission in higher-frequency bands, “smart antennas”,
multi-user detection, new forward error-correction techniques, and advanced
network resource-allocation techniques.

The term “smart antenna” usually refers to the deployment of multiple
antennas at the base-station site, coupled with special processing of the mul-
tiple received signals. Smart antennas can adaptively reject co-channel inter-
ference and mitigate multipath fading, and have been identified by many as a
promising means to extend base-station coverage, increase system capacity
and enhance quality of service.

Currently, smart antennas are added to existing systems in a way that is
transparent to the rest of the network from an operational perspective. This
approach is cost-effective and backward-compatible. Over the next few years,
much of the new wireless infrastructure will employ smart antennas, and to
fully utilize their potential, the air-interface standards must be designed with
smart antennas in mind. For example, proposed third-generation cellular radio
standards include built-in support for smart antennas.

Looking further ahead, once smart antennas are widely deployed and their
benefits have been exploited fully, what should we do next? In this book, Da-
shan Shiu helps answer this question by exploring the use of antenna arrays at
both ends of the wireless link. Dual-antenna array systems offer unprece-
dented spectral efficiencies over wireless channels in which a line-of-sight
path is not present. Since the announcement by Lucent Technologies of their
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xii

BLAST (Bell-labs LAyered Space-Time) prototype, dual-antenna array sys-
tems have garnered considerable attention from both industrial and academic
researchers.

Dual-antenna arrays will become a key technology for future wireless
systems, providing enormous capacity increases that will enable high-speed
mobile Internet access, enhanced-capacity wireless local loops, wireless high-
definition video transport, and other exciting applications. Unlike telephony
applications, which require a constant bit rate per user, many of these new
applications generate bursty, asynchronous traffic, which is well-matched to
the high average throughput and very high peak throughput provided by dual-
antenna arrays.

The theory of dual-antenna array systems is not a straightforward exten-
sion of the existing theory of single antenna-to-multiple antenna communica-
tions, and a single volume cannot hope to provide encyclopedic coverage of
dual-antenna array theory. This book treats several key topics in depth,
including signal propagation, transmit power allocation, information-theoretic
channel capacity, and coding and decoding techniques. Da-shan Shiu dis-
cusses the “what-is”, “what-to-expect” and “how-to” of dual-antenna array
systems. An important unifying theme is how to exploit, rather than mitigate,
multipath fading effects. While this might seem counterintuitive at first,
Chapter 3 should persuade even the skeptical reader of the beneficial effects
of multipath fading.

I recommend this book highly.

Joseph M. Kahn
Berkeley, California
August 10, 1999
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Preface

Dual antenna-array systems offer a significantly larger channel capacity
than single-antenna systems. As a rule of thumb, if the fades between pairs of
transmit-receive antennas are i.i.d., the average channel capacity of a dual
antenna-array system that uses n antennas at both the transmitter and the
receiver is approximately n times higher than that of a single-antenna system.
Furthermore, this increased spectral efficiency cannot be obtained by any
other known methods. This book investigates a few fundamental issues with
wireless communications using dual antenna arrays.

The material in this book is primarily intended for engineers, scientists,
and so forth who want to start learning about this exciting new paradigm. We
assume a basic knowledge of signal processing, linear system theory, digital
communications, and information theory.

A GUIDED TOUR OF THE BOOK

Mathematical Preliminaries

Chapter 2 establishes a generic mathematical representation for a multi-
ple-input, multiple-output (MIMO) frequency-nonselective Rayleigh fading
channel. The expression for channel capacity assuming that the receiver has a
perfect measurement of the channel is presented.

We also provide the asymptotic property of channel capacity assuming
that the channel fades are independent. It is clear that the channel capacity
scales linearly with the number of antenna elements.

Fading Correlation Model

A fading channel is considered as a random variable. Its distribution not
only determines the distribution of channel capacity but also the overall signal
processing architecture. In Chapter 3 we present an abstract model for the
multipath propagation environment of a typical outdoor fixed wireless link
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Preface xiv

and derive the corresponding channel distribution, or fading correlation. This
model is a reasonable approximation of the real propagation environment and
is simple enough to lead to useful insights, such as the relationship between
effective degrees of freedom and fading correlation, about MIMO fading
channels. We then discuss the dependence of channel capacity on model
parameters such as angle spread, antenna element spacing, and angle of
arrival.

The MIMO channel can be decomposed into a set of equivalent single-
input, single-output subchannels. The effect of severe fading correlation is to
reduce the number of subchannels that are active in conveying information.

Power Allocation Strategies

A power allocation strategy determines the allocation of physical transmit
power, and hence the communication rate, to each spatial dimension of the
transmitted signal. Choosing an appropriate power allocation strategy is par-
ticularly important when the SNR is low.

In Chapter 4, we discuss three power allocation strategies for dual
antenna-array systems, assuming that the channel can be described by the
model in Chapter 3. Optimum power allocation achieves the highest capacity
but requires the transmitter to have instantaneous channel state information
(CSI). When the transmitter does not have CSI, uniform power allocation can
be employed. It performs well when the fading correlation is low. When the
fading correlation is high, stochastic water-filling power allocation performs
very close to optimum power allocation in the downlink, and uniform power
allocation achieves the highest average capacity in the uplink.

Layered Space-Time Codes

Space-time codes are channel codes with multiple spatial dimensions that
can be used to utilize the high channel capacity of dual antenna-array systems.
In particular, such codes are necessary in systems in which the transmitter
does not have the instantaneous CSI. Unfortunately, the decoding complexity
of space-time codes can be very high. We propose layered space-time (LST)
codes which allow for low-complexity decoding. We analyze the performance
of LST codes and define the key design parameters to formulate the design
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Preface xv

criteria for LST codes. Furthermore, we examine the use of convolutional
codes and block codes as the constituent codes for DLST codes, and propose
modifications to the LST architecture to greatly improve the performance of
LST codes.

Transmit Diversity

In many applications, antenna arrays are deployed only at the base sta-
tions due to some physical and cost considerations. In Chapter 6 we discuss
techniques that can be applied to improve the quality of transmission from an
antenna array to a single antenna. We provide a channel capacity analysis to
evaluate the performance of these transmit diversity schemes.

Open Issues

The final chapter is a personal statement about the future research direc-
tions on dual antenna-array systems. We identify a few key areas that warrant
further research and development: further understanding of channel statistics,
acquisition and tracking of CSI, signal processing techniques, network issues,
distributed BS antenna scheme, and high performance space-time codes.
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1

Introduction

1.1 Dual Antenna Array Systems

The demand for higher data rates and higher quality in wireless communi-
cation systems has recently seen unprecedented growth. One of the most lim-
iting factors in wireless communications is the scarcity of spectrum.
Techniques that improve spectral efficiency, such as the cellular structure that
allows frequency reuse, have had tremendous impact on the proliferation of
wireless communications. In this book, we explore a new technology that can
dramatically increase the spectral efficiency. One key element of this tech-
nology is to use antenna arrays at both the transmitter and receiver.

Antenna arrays have been used to combat various types of channel
impairments. An antenna array with sufficient antenna spacing can provide
spatial diversity to mitigate multipath fading. Beamforming and diversity
reception can be employed to combat the effect of delay spread and co-
channel interference. For a comprehensive summary, see [1]. The advances in
technology and the expanding demands for antenna arrays have made them
very economical, and the trend of using GHz carriers for wireless access net-
works reduce the size requirements of the antenna arrays.

One implicit assumption underlying these traditional uses of antenna
arrays is that the information content transmitted or received by each antenna
element is identical. This is intuitive because if unrelated signals are trans-
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2 Chapter 1

mitted from different antenna elements, these signal will interfere with each
other at the receiver. As an example, consider beamforming. By properly
adjusting the phase of each antenna, the main lobe of the antenna pattern can
be directed to the desired angle. This enhances the strength of the desired
signal and also suppresses the interference from signals coming from undes-
ired angles. However, we will show in this book that the key to fulfilling the
potential of dual antenna array systems is to transmit independent information
from each antenna element.

It is also believed that maintaining a direct line-of-sight path between the
transmitter and the receiver is desirable because it minimizes the scattering
and absorption of the signal. In this book we will also show that in certain sit-
uations the multipath fading introduced by the scatterers can indeed lead to a
channel capacity much higher than if the channel is line-of-sight.

1.2 Systems Having Multiple Antennas at Both the
Transmitter and the Receiver

Recently, a radically different paradigm for the use of antenna arrays has
been proposed. It has been shown that wireless systems using multiple
antennas at both the transmitter and the receiver offer a large capacity. As a
rule of thumb, if the fades between pairs of transmit-receive antennas are
i.i.d., the average channel capacity of a dual antenna-array system that uses n
antennas at both the transmitter and the receiver is approximately n times
higher than that of a single-antenna system for a fixed bandwidth and overall
transmitted power [2] - [4]. Furthermore, this increased spectral efficiency
cannot be obtained by any other known methods.

The following are the requirements for such a high channel capacity.

• Antenna arrays with sufficient spacings must be deployed at both
ends.

• The link must employ no conventional mechanism, such as fre-
quency- or code- division multiplexing, to ensure that the signals
transmitted by different transmitting antennas are orthogonal to
each other at the receiver.
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Introduction 3

• The propagation environment between the transmitter and the
receiver must provide numerous propagation paths.

• The receiver must be able to measure or estimate the channel gain,
both amplitude gain and phase shift. To our knowledge, to date the
proposed detection techniques require the receiver to apply coher-
ent processing techniques over the received signals.

There are a large number of potential applications for such dual antenna
array systems [5]. However, because of the need for a good channel estima-
tion and the required size or form factor of the antenna arrays, in our opinion
applications using the first generation of implementations will be restricted to
low-mobility, medium-sized client terminals.

This finding of the new paradigm has spurred a great interest in the com-
munications research community. Initial results on channel measurement,
channel capacity, channel modeling and simulation, space-time signal pro-
cessing techniques and space-time channel codes, equalization, and proto-
typing have been reported. We expect to see much more research and
development activities on dual antenna-array systems with space-time pro-
cessing in the near future, because this is truly an innovation with a tremen-
dous impact on wireless communications.

1.3 Overview

The next chapter presents the fundamentals of wireless communications
in fading environments. We describe a generic mathematical representation
for a multiple-input, multiple-output (MIMO) frequency-nonselective Ray-
leigh fading channel. We then present formulas for calculating channel
capacity subject to constraints on the second-order statistics of the input
signal assuming that the receiver has a perfect measurement of the channel.
To serve as a motivating point, we provide a proof of the almost-sure conver-
gence of per-antenna capacity, which is equivalent to saying that the expected
value of channel capacity grows linearly in the number of antenna, under an
idealized assumption on the spatial fading correlation. We will also present a
result which demonstrates the importance of having the channel measurement
at the receiver. If the channel measurement is unavailable to the receiver, the
linear growth of channel capacity with respect to the number of antenna ele-
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4 Chapter 1

ments ceases after the number of antenna elements reach the coherence time
of the channel.

The design of dual antenna-array systems and the analysis of their perfor-
mance require a new class of channel models that pay more attention to the
spatial characteristics. In Chapter 3, we will present a scatterer model which is
appropriate in the context where one end of the wireless link is elevated and
unobstructed while the other end is surrounded by local scatterers. From this
model, we show how the spatial fading correlation can be reasonably esti-
mated given key physical parameters such as angle spread and angle of
arrival. In explaining the effect of spatial fading correlation on the channel
capacity of dual antenna-array systems, we decompose the MIMO channel
into an equivalent system consisting of a set of parallel single-input, single-
output (SISO) channels and show that the fading correlation modifies the gain
distributions of these SISO channels.

Chapter 4 discusses the performance of dual antenna-array systems with
different power allocation strategies. The term “power allocation strategy”
refers to how the transmitted power is distributed among the n spatially
orthogonal transmit modes. Although the capacity using optimum power allo-
cation is the highest, instantaneous channel state information (CSI) at the
transmitter is required to implement optimum power allocation. Uniform
power allocation, on the other hand, is robust and amenable to implementa-
tion. Using the model developed in Chapter 3, we evaluate the performance of
these two power allocation strategies. When the fading correlation is high,
there is a significant difference between the capacities achievable by the two
power allocation strategies. A novel power allocation strategy, which we refer
to as stochastic water-filling, is proposed. We show that in the downlink direc-
tion the power allocation computed using the stochastic water-filling algo-
rithm yields a capacity significantly higher than uniform power allocation.

Though the high spectral efficiency promised by dual antenna array sys-
tems is very exciting, ML detection at the receiver generally requires a com-
plexity that increases exponentially in n. In Chapter 5 we consider a class of
channel codes, the layered space-time (LST) codes, whose encoding/decoding
complexity increases much less rapidly in n. We first review the LST architec-
ture. Subsequently, we analyze the error performance of LST codes. Based on
this analysis, we identify the key parameters of LST codes, and use them to
formulate a set of design criteria for LST codes. Next, we present the optimal
trade-off among design parameters, and the power penalty associated with

Team LRN



Introduction 5

suboptimal LST decoding compared to ML decoding. Operational details of
employing block and convolutional codes as the constituent codes are exam-
ined. We propose modifications to the original LST architecture to greatly
enhance the performance of LST codes.

In many existing applications, e.g. cellular radio networks, multiple
antenna elements can only be deployed at one end; a single antenna element is
used at the other end. While techniques to utilize the receive diversity pro-
vided by the antenna array is well documented, effective ways to utilize the
transmit diversity, in particular in non-line-of-sight environments, have not
been studied until recently. In Chapter 6 we first examine the potential of
transmit diversity when there is only one receiving antenna element. We then
describe methods that achieve the full or partial benefit of transmit diversity
in situations where the transmitter has no channel state information at all.

Chapter 7 summarizes the conclusions of this book and present topics for
future research.
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2
Background

In this chapter, we discuss the fundamental aspects of wireless communi-
cations using multiple antennas at both ends of a link in fading environments.
We describe a mathematical representation for a multiple-input, multiple-
output (MIMO) frequency-nonselective Rayleigh fading channel. We then
examine the definition of channel capacity on such channels assuming that the
channel is quasi-static, and provide a proof of the almost sure convergence of
channel capacity per antenna. It will become clear that multipath fading is the
key to such a high channel capacity. While having the channel state informa-
tion (CSI) at the receiver is critical, having CSI at the transmitter is not. Fur-
thermore, orthogonalization of signals that carry independent data streams in
time, frequency, or code is unnecessary if the number of data streams is less
than the number of antenna elements.

Before we proceed, note that the following notation is used throughout
this book.

• We focus on single-user to single-user communication using
antenna arrays at both ends. We use n and m to denote the number
of antennas at the transmitter and the receiver, respectively, and
refer to an n-transmit, m-receive antenna system as an (n, m) sys-
tem.

• Bold-face lower-case letters, e.g. x, refers to column vectors.
Upper-case letters, e.g. X, refer to matrices.
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8 Chapter 2

• For a matrix X, its lth column is denoted by That is,

The kth row, lth column element is denoted by

• We use * for complex conjugate transpose, ' for transpose, and
†  for  conjugate  transpose.

• A real Gaussian random variable with mean and variance is
denoted as A circularly symmetric complex Gaussian
random variable denoted by is a random variable

in which x and y are i.i.d.

2.1 Channel and Noise Model

In this book, we assume that the communication is carried out using
bursts (packets), and that the channel varies at a rate slow enough that it can
be regarded as essentially fixed during a burst. Under this assumption, the
multiple-input, multiple-output (MIMO) channel can be regarded as linear
time-invariant during a burst transmission. Denote the signal transmitted by
the lth transmit antenna by and the signal received by the kth receive
antenna by Also denote the impulse response connecting the input of
the channel from transmit antenna l to the output of the channel to receive
antenna k by The input/output relation of the MEA system is described
by the following vector notation:

where
is additive white Gaussian noise (AWGN), and * denotes

convolution.

If the communication bandwidth is narrow enough that the channel fre-
quency response can be treated as flat across frequency, the gain connecting
transmitting antenna l and receiving antenna k can be denoted by a complex
number The discrete-time system corresponding to (2-1) is:
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where is the discrete-time index,
and the channel matrix is

In this book, we consider Rayleigh fading channels. For Rayleigh fading
channels, the channel gain is modeled as [6]. The m noise com-
ponents of are assumed to be i.i.d. . The average signal-to-noise
ratio (SNR) is defined as To facilitate a fair comparison
between systems having different number of antennas, the average SNR,

where tr denotes trace, is limited to be no greater than
regardless of n.

In most of this book, we focus on slowly varying, flat Rayleigh fading
channels because even with this simple and manageable channel model most
important insights into dual antenna-array systems can be obtained. This
assumption is relaxed in Chapter 5, where we consider the performance of
space-time codes over fast-fading channels. The results obtained here for
slowly varying, flat Rayleigh channels can be extended to other classes of
channels, using established techniques. For example, a wideband channel with
frequency selective fading can be transformed into parallel narrowband chan-
nels through the use of orthogonal frequency division multiplexing (OFDM)
[7], and the theories described in this book can be applied to each of the nar-
rowband channel.

2.2 Channel Capacity

In the introduction, we mentioned the assumption that communication is
carried out using bursts (packets). The burst duration is assumed to be short
enough that the channel can be regarded as essentially fixed during a burst, but
long enough that the standard information-theoretic assumption of infinitely
long code block lengths is a useful idealization. These assumptions are met in,
for instance, fixed wireless and indoor wireless applications. In short, for each
burst transmission, the channel is randomly drawn from an underlying distri-
bution and stays fixed for the duration of the entire burst. In this quasi-static
scenario, it is meaningful to associate a channel capacity with a given realiza-
tion of channel matrix H. Because the channel capacity is a function of the
channel realization, the channel capacity is a random quantity whose distribu-
tion is determined by the distribution of H.
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10 Chapter 2

Assuming that receiver has perfect CSI, the channel capacity of a commu-
nication system described by (2-2) given the channel realization H subject to
the constraint that

achieved by zero-mean circularly symmetric complex Gaussian input
A more relaxed condition is that only the average overall trans-

mitted power, is constrained. Subject to this constraint, the channel
capacity is

achieved by zero-mean circularly symmetric complex Gaussian input whose
covariance matrix is the argument that maximizes (2-4).

In this book, we will present channel capacities subject to various con-
straints1 on the second order statistics of the input. Usually the underlying
constraint will be obvious from the context. Whenever there is potential for
confusion, we will explicitly indicate the particular constraint.

In later chapters we will compare channel capacities subject to different
constraints. To compare one channel capacity distribution from another, note
that in slow fading environments an important performance measure for an
dual antenna-array system is the capacity at a given outage probability q,
denoted by To be specific, the capacity is less than with probability q.
In this book, comparisons among different capacity distributions will be pre-
sented, when possible, based on the capacity at ten-percent outage, How-

1 . For a scalar AWGN channel, when the term channel capacity is used, it usu-
ally refers to the maximal mutual information subject to a maximal variance
constraint on the input. However, for multi-dimensional inputs, consensus on
what is the implied constraint has not been reached. Therefore, we feel that it
is appropriate not to reserve the term channel capacity for a certain constraint.
Instead, channel capacity is used as a synonym for maximal mutual informa-
tion.
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Background 11

ever, when it is not practical to compute we will use the expected value of
capacity for comparison purposes.

2.3 Asymptotic Behavior of Channel Capacity

We have mentioned in Chapter 1 that the capacity of an (n, m) wireless
link assuming idealized i.i.d. flat Rayleigh fading is approximately propor-
tional to min(n, m). This large capacity is a major motivation for the research
described in this book. In the following, we provide a succinct outline of the
theoretical derivation of this result. For more details, the reader is referred to
[9].

Specifically, we consider an (n, n) i.i.d. flat Rayleigh fading
focus on the ratio between the expected value of channel capacity, E[C], to

channel. We

the number of antennas, n, subject to a constraint on the second-order statis-
tics of the transmitted signal . Given such a constraint,
channel capacity is achieved by a zero-mean circularly symmetric complex
Gaussian input distribution The channel capacity is

where are the eigenvalues of . It has been shown that, as the
distribution of the eigenvalues of converges to the following deter-
ministic function almost surely, where denotes the eigenvalue of
by [10]:

Therefore, almost surely,
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12 Chapter   2

i.e., C / n converges to a constant determined by the SNR

Note that this convergence result does not require the transmitter to have
channel state information because in this case the covariance matrix of the
input signal is channel independent.

2.4 Channel capacity when the receiver does not have
CSI

Here we examine the channel capacity when neither the transmitter nor
the receiver knows the CSI. It says that, if the receiver does not have CSI,
increasing the number of transmit antennas beyond the channel coherence
time does not improve channel capacity assuming that the channel fades are
i.i.d. Rayleigh. The result is due to Marzetta and Hochwald [11].

The channel is assumed to remain constant for T symbol periods
after which they change to new independent random values which they

maintain for another T symbol periods, and so on. T is referred to as the coher-
ence time of the channel. In the following, we assume that m is always larger
than n.

Define and

Then

Because the receiver does not have CSI, the receiver can no longer calculate
the likelihood of S given H. Instead, it must formulate the unconditional likeli-
hood of the transmitted signal, which is the conditional probability density of
R given S. If the entries of H are i.i.d.

where denotes the identity matrix and “tr” denotes trace. Note that
the likelihood of a transmitted signal S depends only on Equation (2-9)
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suggests that it is the probability distribution of which is important, not
the distribution of S itself.

Consider a particular codebook The codebook leads to a probability
mass function of . Now construct another codebook  For each code-
word S belonging to we put a corresponding codeword L, which is a

lower triangular matrix, in These two matrices S and L are related
by the Cholesky factorization, . Because contain only
lower triangular matrices, an antenna array of T elements is enough to
transmit the codewords of Furthermore, it is shown in [11] that and

generate the same mutual information and conform to the same transmit
power constraint:

The conclusion is that increasing the number of transmit antenna does not
increase capacity. It is in sharp contrast with the case when the receiver has
CSI.

2.5 Discussion

Here we examine the requirements listed in Chapter 1 for the high
channel capacity offered by employing dual antenna arrays.

1. Multiple antennas must be deployed at both ends. To be more specific, if
n = o(m) (or m = o(n)), i.e. the number of antenna elements at one
end of a link is insignificant compared to that at the other end, the chan-
nel capacity can not grow linearly with m (or n). The proof, assuming
that the entries of H are i.i.d., is shown in the Appendix.

2. The propagation environment between the transmitter and the receiver
exhibits rich multipath.
It has been shown in [7] that if the channel consists of only L multipath
component from the transmitting antenna array to the receiving antenna
array, and that if the distance between the antenna arrays and the scatter-
ers are sufficiently larger than the physical dimension of the antenna
arrays, once min(m, n) is greater than L, the capacity stops increasing
linearly with the number of antennas for a reasonable SNR. In this book,
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we always assume that the propagation environment provides rich
enough multipath so that the number of multipath components is not a
concern.

The following two requirements are evident from the formulation of
channel capacity in (2-3).

3. The link must employ no conventional mechanism, such as frequency-
or code- division multiplexing, to ensure that the signals transmitted by
different transmitting antennas are orthogonal to each other at the
receiver.

4. The receiver must measure the channel gain (both amplitude gain and
phase shift). The techniques introduced in this book are all based on an
implicit assumption that the receiver can apply coherent processing
techniques over the received signals.

2.6 Summary

In this chapter, we outlined the scope of study for the next few chapters.
Specifically, we provided a general framework for dual antenna-array systems
operating on frequency-nonselective, burst-stationary Rayleigh fading chan-
nels. We provided the definition of channel capacity, assuming that the CSI at
the receiver is perfect. The expressions for channel capacity subject to various
constraints on the second-order statistics of the input are presented.

We showed that when the input covariance matrix is constrained to be a
diagonal matrix with identical diagonal entries, the channel capacity of an
(n, n) channel per antenna converges almost surely to a constant determined
by average SNR. We also showed that if the receiver does not have CSI,
increasing the number of transmit antenna elements over the channel coher-
ence time does not improve channel capacity. Finally we commented on the
requirements that must be met in order to utilize this high capacity.
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Appendix

If m and n tend to infinity in such a way that n / m tends to a limit y
then the largest eigenvalue of HH†/m, denoted by converges

to almost surely [12]. Therefore, if asymptoti-
cally, i.e. the increase of the number of antenna elements at the transmitting
end of a link is insignificant compared to that at the receiving end, from (2-5),
the channel capacity per receiving antenna converges to
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3

SPATIAL FADING
CORRELATION AND ITS

EFFECTS ON
CHANNEL CAPACITY

3.1 Introduction

In Chapter 2 it is shown that, if the fades between pairs of transmit-receive
antenna elements are independent and identically Rayleigh, for a given trans-
mitter power, the channel capacity per antenna of an (n, m) channel as
min(n, m) grows toward infinity converges to a nonzero constant determined
by the average SNR almost surely.

The aforementioned assumption of i.i.d. fading has been made in many
previous works that explore the channel capacity of dual antenna-array sys-
tems; e.g. [3], [13], [14]. However, in real propagation environments, the
fades are not independent due, for example, to insufficient spacing between
antenna elements. Different channel correlation profiles lead to different
channel capacity distribution. It has been observed [9] that when the fades are
correlated the channel capacity can be significantly smaller than when the
fades are i.i.d. The goal of this chapter is to investigate through analytical
methods the effects of fading correlations on dual antenna-array systems. To
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do this, we first need to quantify the spatial fading correlation for the partic-
ular class of fading channels of interest.

There have been many works that study the characteristics of spatial
fading correlation, mainly motivated by the need to quantify the effect of spa-
tial fading correlation on the performance of diversity reception systems
(n = 1, m > l). One approach is to record a large number of typical channel
realizations through field measurements or through ray-tracing simulations,
e.g., [9], [15] - [18]. Another approach is to construct a scatterer model that
can provide a reasonable description of the scattering environments for the
wireless application of interest. The advantage of using abstract models is that
with a simple and intuitive model the essential characteristics of the channel
can be clearly illuminated, and the insights obtained from the model can then
be utilized in planning the detailed measurements and/or simulations. For an
overview of the numerous scattering models, see [19]. Examples of the
abstract model approach include [7], [15], [20] - [22]. It must be noted, how-
ever, that abstract models need to be validated. To our knowledge, the mod-
eling of fading correlation and its effect on capacity when both the transmitter
and receiver employ multiple antenna elements have not been addressed by
previous works1.

In this chapter, to model multipath propagation and fading correlation, we
extend the “one-ring” model first employed by Jakes [20]. This model is
appropriate in the context where the one end of the wireless link is elevated
and seldom obstructed. It must therefore be noted that the results obtained in
this chapter are not necessarily applicable to other classes of fading channels.
From the “one-ring” model, the spatial fading correlation of a narrowband flat
fading channel can be determined from the physical parameters of the model,
which include antenna spacing, antenna arrangement, angle spread, and angle
of arrival. In this chapter we will only apply the channel capacity distribution
given the spatial fading correlation. The spatial fading correlation can also be
applied in research areas related to other applications of multiple antenna sys-
tems [24].

1. Driessen and Foschini [23] studied the deterministic channel when only
line-of-sight channel components exist between the transmitting antenna ele-
ments or their images and the receiving antenna elements.
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As mentioned above, in order to quantify the effect of fading correlation,
we focus on the information-theoretic channel capacity. To interpret the effect
of spatial fading correlation, we will first show that an (n, m) MIMO channel
can be decomposed into min(n, m) subchannels, or (spatial) eigenmodes. The
channel capacity of an (n, m) MIMO channel is the sum of the capacities of its
individual subchannels. In Chapter 3.3 we show that spatial fading correlation
determines the distributions of the subchannel capacities and thus the distribu-
tion of the overall channel capacity. We formulate closed-form expressions for
the upper and lower bounds of the channel capacity and present the distribu-
tions of these bounds. The exact distributions of the overall channel capacity
and subchannel capacities are difficult to compute, however; we employ
Monte-Carlo simulations to observe histograms of these quantities.

This chapter is organized as follows. In Chapter 3.2, we present the
abstract multipath propagation model from which the spatial fading correla-
tion is derived. In Chapter 3.3, we present the analysis of channel capacity,
most importantly the closed-form expressions for the distributions of the
bounds on channel capacity given the spatial fading correlation. In
Chapter 3.4 we employ Monte-Carlo simulations to obtain the histograms of
channel capacity. Concluding remarks can be found in Chapter 3.6.

3.2 Scatterer Model and Spatial Fading Correlation

Fig. 3-1 shows the “one-ring” model. This model will be employed to
determine the spatial fading correlation of the channel H. As we mentioned in
the introduction, this model has been employed in several studies with some
minor variations. The “one-ring” model is appropriate in the fixed wireless
communication context, where the base station (BS) is usually elevated and
unobstructed by local scatterers and the subscriber unit (SU) is often sur-
rounded by local scatterers. For notational convenience, in this chapter the BS
and the SU assume the roles of transmitter and receiver, respectively. In other
words, we are taking a forward-link perspective. The parameters in the model
include the distance D between BS and SU, the radius R of the scatterer ring,
the angle of arrival at the BS, and the geometrical arrangement of the
antenna sets. As seen by a particular antenna element, the angles of incoming
waves are confined within We refer to as the angle spread.
Since D and R are typically large compared to the antenna spacing,
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The “one-ring” model is basically a ray-tracing model.
The following assumptions are generally made in this model ([15], [21]):

• Every “actual scatterer” that lies at an angle to the receiver is
represented by a corresponding “effective scatterer” located at the
same angle on the scatterer ring centered on the SU. Actual scat-
terers, and thus effective scatterers, are assumed to be distributed
uniformly in The effective scatterer located at angle is
denoted by A phase is associated with rep-
resents the dielectric properties and the radial displacement from
the scatterer ring of the actual scatterer that represents [15].
Therefore, rays that are reflected by are all subject to a phase
change of Statistically, is modeled as uniformly dis-
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tributed in and i.i.d. in The radius R of the scatterer ring
is determined by the r.m.s. delay spread of the channel [15].

• Only rays that are reflected by the effective scatterers exactly
once are considered.

• All rays that reach the receiving antennas are equal in power.

In the limit of infinitely many scatterers, the normalized complex path
gain from transmitting antenna element  to receiving antenna element

is

In (3-1), is the distance from object X to object Y and  is the wave-
length. By the central limit theorem, constructed from (3-1) is Ñ(0, 1).
Therefore, in the limit case the channel constructed according to the model is
purely Rayleigh fading [6] [25].

To study the spatial fading correlation, we use the following notation. If H
is an matrix then we use vec(H) to denote the vector formed
by stacking the columns of H under each other; that is, if
where is an m × 1 vector for i = 1,..., n, then

The covariance matrix of H is defined as the covariance matrix of the vector
vec(H): cov(vec(H)) = E[vec(H)vec(H)†]. (Note that for a zero-mean
complex Gaussian vector g,  the autocovariance is specified as the autocovari-
ance matrix of the vector  Here, because it can be verified that
vec(H) constructed from the “one-ring” model is special complex Gaussian,
the second-order statistics of vec(H) are completely specified by
cov(vec(H)) [2].) The covariance between and is
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In general, (3-3) needs to be evaluated numerically. Fortunately, when is
small, which is often the case in fixed wireless applications, an approximation
for (3-3) exists that offers useful insights. The approximation is derived using
the notation illustrated in Fig. 3-2. In a two-dimensional plane, let the x-axis
be parallel to the line that connects the BS and the SU. Let denote
the displacement between and and and denote
the projections of on the x-axis and y-axis, respectively. Similar
notations,                           and apply to the SU side. Let
denote the angle at which is situated, as viewed from the center of the BS
antenna relative to the x-axis. When is small:

•

•

•

Substituting these approximations into (3-3):
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We evaluate (3-4) for the following special cases. Note that
where is the Bessel function of

the first kind of the zeroth order.

• From one BS antenna element to two SU antenna elements, as

• From two BS antenna elements aligned on the y-axis to one SU

• From two BS antenna elements aligned on the x-axis to one SU

antenna element,

A well-known result for diversity reception systems derived in [21] states that
when maximal-ratio combining is employed the degradation in capacity is
small even with fading correlation coefficients as high as 0.5. From our
numerical evaluations, we find that this is also a good rule of thumb for the
capacity of dual antenna-array systems (see Chapter 3.4). Here, to attain a
correlation coefficient lower than 0.5, the minimum antenna element separa-
tions employed by the three cases are and
respectively.

If the minimum SU antenna spacing is sufficiently greater than half wave-
length, the correlation introduced by finite SU antenna element spacing is low
enough that the fades associated with two different SU antenna elements can
be considered independent. Mathematically, if the SU antenna spacing is large
enough, the n rows of H can be regarded as i.i.d. complex Gaussian row vec-

tors with covariance matrix where The channel cova-
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nance matrix in this case is2 . Similarly, if the SU and

BS switches their roles as the transmitter and the receiver, cov(vec(H)) =

Note that if cov( vec (H ) )= the statistical properties of H

are identical to those of the product matrix where contains i.i.d.

Ñ(0, 1) entries, and In summary, if the fades
experienced by different SU antenna elements can be considered independent,
the following approximations can be used to analyze the channel capacity:

in the downlink (BS to SU) and

in the uplink (SU to BS). (3-5)

In (3-5), the notation x ~ y means that “the distribution of  x is identical to the
distribution of y”. We will verify in Chapter 3.4 that (3-5) is a good approxi-
mation in the sense that the distribution of the eigenvalues of HH† – hence
the channel capacity distribution – is closely approximated.

3.3 Analysis of Channel Capacity

The channel capacity of an (n, m) channel given the channel realization H
subject to an average transmitter power constraint is described by (2-4):

Without loss of generality, in this chapter the noise variance is set to 1.

2. The Kronecker product of matrices M and N is defined as
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The MIMO channel is an n-input, m-output linear channel with i.i.d.
AWGN. With linear operations at both the input and the output of the channel,
an (n, m) channel can be transformed into an equivalent system consisting of
min(n, m) decoupled single-input, single-output (SISO) subchannels. To show
this, let the singular value decomposition of the channel matrix H be

The transmitter left-multiplies the signal to be conveyed,
by the unitary matrix Similarly, the receiver left-multiplies the

received signal by . That is, and
These unitary transforms do not affect the channel capacity.

Substituting these into (2-2), the input-output relationship between and
is

where the components of the noise vector are i.i.d. Ñ(0, 1) . Denote the
diagonal entries of the nonnegative diagonal matrix  by
Writing (3-7) component-wise, we get

Therefore, the multiplication of unitary matrices  and transforms an
(n, m) MIMO channel into n SISO subchannels with (power) gains Note
that are the eigenvalues of HH† because The
channel capacity is the sum of the capacities of the n subchannels [2]. Sup-
pose that a normalized transmit power  is allocated to the kth subchannels,
the channel capacity is

From (3-9), channel capacity is determined by both and which is a
function of H, and which does not depend on H. In this chapter, the focus
is on the effect of channel fading correlation. Not to make things overly com-
plicated, in this chapter we assume that the transmitted power is distributed
evenly to these subchannels [26]; i.e. This is referred to as uni-
form power allocation. Uniform power allocation is robust, easy to analyze,
and amenable to implementation ([9], [26], [27]). We will examine the general
problem of power allocation in further detail in the next chapter.
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The channel capacity subject to a uniform power allocation constraint
is

Note that in this case the channel capacity is independent of This property
makes uniform power allocation a good choice for systems in which the trans-
mitter cannot acquire the knowledge of H.

3.3.1 Bounds on Channel Capacity

The distribution of channel capacity can be calculated given the distribu-
tion of However, for a general spatial fading covariance and a finite spa-
tial dimensionality, the distribution of can be very difficult to compute.
The exact distributions of and channel capacity will be studied using
Monte-Carlo simulations in the next section. Here, we formulate lower and
upper bounds on channel capacity based on the fading statistics (3-5). To
derive these bounds, we need the following mathematical tools.

(a) Let be an matrix whose entries are i.i.d. Ñ(0, 1) . The sub-
script w is used to mean “white”. Denote the QR decomposition of

by = QR, where Q is an orthogonal matrix and R is an upper
triangular matrix. The upper diagonal entries ofR are i.i.d. Ñ(0, 1)
and are statistically independent of each other. The magnitude squares
of the diagonal entries of R, say , are chi-squared distributed
with 2 ( m – l + 1) degrees of freedom. These can be proved by apply-
ing the standard Householder transformation to the matrix  [28],
[29]. Clearly, for any unitary matrices and

(b) For any diagonal matrix D and any upper-triangular matrix R,

(c) For any nonnegative definite matrix A,

(d) For any unitary matrix Q and any square matrices X and Y,
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Next, we examine the following two special cases. In the following, we
assume that

Case I. The fades are i.i.d. Substituting into (3-10), the
channel capacity can be lower- and upper-bounded by, respectively,

and

From (a), is chi-squared distributed with 2(m – l + l) degrees of
freedom. Also because is chi-squared distributed with
2(n – l) degrees of freedom, the term in (3-12) is chi-
squared distributed with 2(m + n – 2  l + l) degrees of freedom. In short, the
channel capacity is lower bounded by the sum of the capacities of n subchan-
nels whose power gains are independently chi-squared distributed with
degrees of freedom 2m, 2m 2, ..., 2(m – n + 1), and is upper bounded by
the sum of the capacities of n subchannels whose power gains are indepen-
dently chi-squared distributed with degrees of freedom
2(m + n – 1), 2(m + n – 3), ..., 2(m – n+ 1). The difference between the
mean values of the upper and the lower bounds is no greater than 1 bps/Hz per
spatial dimension. The lower bound was first derived by Foschini in [26]. In
fact, Foschini has proved that the mean values of the exact channel capacity
and its lower bound, both normalized to per-spatial dimension quantities, con-
verge to the same limit when [26].
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Case II. cov(vec(H)) = We have shown in
Chapter 3.2 that in the “one-ring” model if the antenna array inside the scat-
terer ring (usually the SU) employs a sufficiently large antenna element
spacing, the fading covariance matrix can be approximated by in the
downlink (BS to SU) and in the uplink (SU to BS), and the approxi-
mations in (3-5) apply. Note that if cov(vec(H)) = for some nonnega-
tive definite the distributions of and hence the distribution of channel
capacity can be exactly calculated using the techniques developed for Wishart
matrices [28]. However, the calculation is generally very difficult because it
involves the zonal polynomials, which are notoriously difficult to compute.
Furthermore, the actual computation does not give us as much insight into the
problem compared to the following bounds.

Substituting H  by into (3-10), we have

Here and are diagonal matrices whose diagonal elements are the sin-
gular values of A and B†, respectively. The diagonal entries of both and

are ordered in descending order of their magnitudes down the diagonal.
Substituting and A = I in (3-13), the capacity in the downlink can
be bounded by:

and
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Similar to the case when the fades are i.i.d., the channel capacity is still lower-
and upper- bounded by the total capacity of n independent SISO subchannels,
and the difference between the mean values of the upper and the lower bound
is less than 1 bps/Hz per spatial dimension. Due to the spatial fading correla-
tion, the power gain of the l th subchannel is scaled by a factor of
(or, on decibel scale, augmented by dB). Note that
because the trace of is equal to n, when compared to the situation in
which the fades are i.i.d., the path gains of some subchannels are scaled up
while others are scaled down.

When the number of antenna elements is large, determining the channel
capacity through simulation is very computation-intensive. The upper bound
in (3-15) can be employed to investigate the capacity when the number of
antenna elements is large. Let E(C) denote the mean value of channel capacity
at a fixed average total power constraint ρ . For any concave function f(x),

Thus an upper bound of E(C), denoted by in the
downlink direction can be derived from (3-15) by substituting the mean values
of chi-squared random variables for them:

Note that due to the normalization used in this chapter, the mean value of a
chi-squared random variable with 2k degrees of freedom is k.

For an example of the applications of the bounds, we employ (3-16) to
investigate the effect of angle spread on the relation between and the
number of antenna elements n = m. The result is displayed in Fig. 3-3. (The
definitions of broadside and inline linear antenna arrays will be given in
Chapter 3.4.) The bounds permit us to compute even when n is large.

3.3.2 Effective Degrees of Freedom

We have shown in (3-9) that an (n, m) channel can be decomposed into an
equivalent system of min(n, m) SISO subchannels whose path power gains are
the eigenvalues of HH†. Based on this decomposition, one would intuitively
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expect that the channel capacity of an (n, n) channel grows roughly linearly
with n for a given fixed transmitted power, because if for
k = 1, 2, ...,n, (3-10) can be approximated by

However, this high-SNR condition may not be met in practice. If
is much smaller than one for some k, the capacity provided by the kth sub-
channel is nearly zero. This may occur when the communication system oper-
ates in a low-SNR setting, e. g., in long-range communication application or
transmission from low-power devices. On the other hand, it may occur if with
significant probability is very small, which is a direct result of severe
fading correlation. Here we introduce the concept of effective degrees of
freedom (EDOF), which is a parameter that represents the number of sub-
channels actively participating in conveying information under a given set of
operating conditions. It is well known that for an SISO channel, at high SNR a
G-fold increase in the transmitter power results in an increase in the channel
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capacity of If a system is equivalent to EDOF SISO channels in
parallel, the capacity of the system should increase by bps/
Hz when the transmitter power is raised by a factor of G. In light of this, we
define EDOF at a given transmit power and outage probability q to be

We note that EDOF is a real number in [0, n]. Although the
channel matrix H has rank n with probability one in general, the power allo-
cated to (n – EDOF) out of the n dimensions is very poorly utilized. EDOF is
a function of spatial fading correlation and SNR; its value is higher when SNR
is increased.

For an extreme example of how fading correlation affects EDOF, consider
the fading correlation in the “one-ring” model when the angle spread
approaches zero. In such a case, Therefore, the n columns
of H are perfectly correlated, and only one of the n eigenvalues of HH† has
significant probability of being practically nonzero. The overall effect is that,
as the angle spread approaches zero, EDOF approaches one. The capacity that
an (n, n) dual antenna-array system provides thus degenerates to that provided
by a (1, n) multiple antenna system.

3.4 Simulation Results

In this section, we present the capacity of dual antenna-array systems
obtained from Monte-Carlo simulations. Simulation is necessary because
computing the distributions of channel capacity, subchannel gains and sub-
channel capacities analytically is very difficult. The results in this section
illustrate the effect of the antenna geometry and the physical dimensions of
the scattering environment on the statistics of channel capacity. Another goal
is to verify that (3-5) is a good approximation to the exact channel distribu-
tion.
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3.4.1 Simulation Algorithm

Fig. 3-4 shows the arrangement of antenna elements. We have chosen a
fixed number of antenna elements m = n = 7. In Fig. 3-4(a), seven antenna
elements are equally spaced along an axis. This is referred to as a linear
antenna array. In Fig. 3-4(a) we also define the angle of arrival  at the BS for
linear antenna arrays. Following conventional notation [15], we use the term
“broadside” and “inline” to refer to the situations when and

respectively. In Fig. 3-4(b), seven antennas are arranged on a hex-
agonal planar array. This is referred to as the hexagon antenna array. For
planar antenna sets, the hexagonal arrangement achieves the highest antenna
density per unit area for a given nearest-neighbor antenna spacing. Further-
more, the effects of the angle of arrival are not significant, due to the sym-
metry of the hexagon. Three configurations are considered: broadside and
inline linear antenna array at the BS with inline linear antenna array at the SU,
and hexagon antenna arrays at both the BS and the SU. The nearest-neighbor
separations between antenna elements of the BS and the SU antenna sets are
denoted by dt and dr, respectively. Again the BS and the SU assume the roles
of the transmitter and the receiver, respectively.

Given dt, and dr, one way to generate the channel realization is to ran-
domly select the angular positions and phases of the equivalent scatterers and
compute H using ray tracing. When the number of scatterers is large, an
equivalent way is as follows. First, compute the channel covariance matrix
cov(vec(H)) from (3-4). Let The
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instance s of H can then be generated by premultiplying a white channel,
That is,

We generated 10,000 instances of channel and collected the statistics of
channel capacity and ordered eigenvalues of HH†. The average received
SNR is chosen to be 18 dB. For comparison purposes, the 10% outage
channel capacities of (1, 1), (1, 7), and (7, 7) systems over i.i.d. Ray-
leigh-fading channels given dB are 2.94, 7.99, and 32.0 bps/Hz,
respectively.

3.4.2 Results

The physical parameters in the “one-ring” model include the angle spread,
angle of arrival, antenna spacing, and antenna arrangement. First, we investi-
gate the effect of angle spread Fig. 3-5(a) shows the complementary cumu-
lative distribution function (ccdf) of channel capacity with hexagon antenna
arrays versus The support of the transition region of the ccdf curve moves
toward lower capacity values as the angle spread decreases. Note that when
the angle spread is extremely small the ccdf for the channel
capacity of a (7, 7) dual antenna-array systems with hexagon antenna arrays is
identical to that of a (1, 7) diversity reception system with maximal-ratio com-
bining. Fig. 3-5(b) shows for the three configurations of antenna arrays
versus For all three, decreases monotonically as the angle spread
decreases. Intuitively, because the difference in path lengths from two trans-
mitting antenna elements to any scatterer becomes smaller as decreases, it
becomes increasingly difficult for the receiver to distinguish between the
transmissions of the various transmitting antenna elements. Mathematically,
the correlation between the columns of H increases as decreases. Fig. 3-5(c)
shows that the EDOF of each type of antenna array settings indeed decreases
as the angle spread decreases.

The simulation also provides the pdfs of the ordered eigenvalues of HH†.
The magnitude of is best displayed in decibel units. Let
and let denote the pdf of Fig. 3-6 displays The followings
are observed. As the angle spread decreases, (a) the median of increases
slightly, (b) the medians of , decrease, and (c) the difference between
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the medians of and increases for all k. These observations indicate
that, statistically, as decreases, the disparity among i.e. the disparity
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among the subchannels in (3-8), increases. The pdfs also provide a conve-
nient way to estimate the EDOF. The average received SNR necessary to
obtain a certain EDOF can be estimated from Fig. 3-6 as follows. For a natural
number the average received SNR necessary for is approximately

where is determined by

Secondly, we investigate the effect of the BS antenna spacing dt.
Fig. 3-7(a) shows the ccdf of channel capacity with hexagon antenna arrays in
the large angle spread setting We find
that the channel capacity increases greatly as dt increases. In Fig. 3-7(a), sim-
ilar to Fig. 3-5(a), the support of the transition part of the ccdf curve moves
toward higher capacity values as dt increases. Fig. 3-7(b) and Fig. 3-7(c) dis-
play the relation between and dt for the three types of antenna array set-
tings in the large and small angle
spread settings, respectively. Given a fixed dt, the capacity of a (7, 7) system
with broadside linear antenna array is always higher than that of a (7, 7)
system with hexagon antenna array which, in turn, is always higher than that
of a (7, 7) system with inline linear antenna array. In Chapter 3.3, we showed
that the effectiveness of reducing the fading correlation by increasing the BS
antenna spacing along the axes perpendicular and parallel to the arriving
waves are different. To attain zero fading correlation with inline linear antenna
arrays, the BS antenna spacing must be times of the spacing required
when using broadside linear antenna arrays. The difference in effectiveness is
confirmed here by simulation. Note that because the Bessel function gov-
erning the relation between antenna spacing and fading correlation is not
monotonic, the channel capacity does not decrease monotonically as dt is
decreased. This can be seen in Fig. 3-7(b).

Thirdly, we examine the effect of the SU antenna spacing dr. Fig. 3-8(a)
shows the ccdf of channel capacity with hexagon antenna arrays in the large
angle spread setting Fig. 3-8(b) and
Fig. 3-8(c) display versus dr in the large and small

angle spread settings, respectively. The ccdf curves of
channel capacity become steeper as dr increases. This results in an improve-
ment in but such an improvement is not nearly as significant as the
capacity improvement while increasing dt. The analysis in Chapter 3.3
explains the striking difference between increasing the antenna spacing at the
BS and at the SU, in terms of effectiveness in improving channel capacity.
Once the antenna spacing at the SU is more than a half wavelength, the corre-
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lation coefficient between any two entries on a column of H is generally lower
than 0.5. The fading correlation is already low and therefore cannot be
reduced significantly by increasing dr.
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We conclude that the angle spread and the BS antenna spacing perpendic-
ular to the direction of the arriving waves at the BS dominates the channel
correlation and thus the channel capacity. If the incoming waves are known to
come from a certain direction, it is advantageous to deploy a broadside linear
antenna array. On the other hand, if omnidirectional coverage is the goal, an
antenna array with a symmetric configuration, such as the hexagon antenna
array, is clearly the better choice.

Fig. 3-9 compares the eigenvalue distributions of HH† and
given the parameters and =15° and 0.6°.

Very good agreement is observed. The results in Fig. 3-8 also show that the
overestimate of channel capacity caused by assuming the rows of H are uncor-
related is not substantial. These results demonstrate that (3-5) is a valid
approximation in the downlink if the SU employs an antenna spacing suffi-
ciently large.

3.5 Two-ring Model

In certain applications such as indoor wireless systems and mobile-to-
mobile communications, it is common to find that both ends of the link are
surrounded by local scatterers. In these cases the “one-ring” model is no
longer appropriate. Fig. 3-10 illustrates the “two-ring” model, which is a nat-
ural extension of the “one-ring” model. In the “two-ring” model, a communi-
cation entity always has a ring of scatterers centered around it.

The path gain in the “two-ring” model is obtained through ray-
tracing in a manner similar to (3-1) in the “one-ring” model. That is, ignoring
the path amplitude loss,

In (3-20), Su(θk) refers to the kth scatterer on the scatterer ring around user u,
u = 1, 2. The additive phase component refers to the phase associated
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with the scatterer It is assumed that the additive phases are indepen-
dently uniformly distributed.

Unfortunately, in contrast to the “one-ring” model, as both and
the channel gain does not converge to a Gaussian random vari-

able. Therefore, it is not enough to completely describe the statistics of the
channel by specifying the channel covariance matrix cov(vec(H)). Instead,
we will generate instances of channel realizations through ray-tracing and use
them in subsequent Monte-Carlo simulations to study the statistical properties
of the channel.
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Fig. 3-11 displays the capacity distribution at different separations
between the two communicating entities. It is obvious that as the distance
between the two communicating entities increases, the channel capacity
decreases as a result of increasing fading correlation. Because the two antenna
arrays are both surrounded by local scatterers, the variation of the capacity
distributions due to the orientation and the physical configurations of the
antenna arrays is insignificant. We also found that the effect of antenna
spacing is small if the antenna spacing is more than half a wavelength.

3.6 Summary

In previous studies that analyze the channel capacity of dual antenna-
array systems, a common assumption is that the fades between pairs of
transmit-receive antenna elements are i.i.d. However, in real propagation envi-
ronments, fading correlation does exist, and can potentially lead to a capacity
lower than that predicted under the i.i.d. fading assumption. In this chapter,
we proposed an abstract model for the multipath propagation environment.
Using the model, the spatial fading correlation and its effect on the channel
capacity can be determined.

The “one-ring” model can reasonably represent a scattering environment
in which one of the communicating parties, the SU, is surrounded by local
scatterers. The channel correlation based on the “one-ring” model is a func-
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tion of antenna spacing, antenna arrangement, angle spread, and the angle of
arrival. When the angle spread is small, the contributions to the spatial fading
correlation from the SU antenna element spacing and the BS antenna element
spacing (both parallel to and perpendicular to the direction of wave arrival)
are significantly different. We derived expressions for approximate fading
correlation to highlight their differences. We considered the situations in
which the antenna element spacing at the SU is sufficient that the correlation
among the entries on any column of the channel matrix is negligible.

To understand the effect of fading correlation on channel capacity analyti-
cally, we first showed that an (n, m) MIMO channel consists of min(n, m)
SISO subchannels, or eigenmodes. The MIMO channel capacity is the sum of
the individual subchannel capacities; the gains of these subchannels are the
min(n, m) largest eigenvalues of HH†. When the SU antenna spacing is suffi-
ciently large, the power gains of these subchannels are independent scaled
chi-squared distributed random variables with

degrees of freedom. The
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fading correlation determines the scaling factors. The stronger the fading cor-
relation, the higher the disparity between these scaling factors. As the fading
correlation becomes more severe, more and more subchannels have gains too
small to convey information at any significant rate. We defined the parameter
effective degrees of freedom (EDOF) to represent the number of subchannels
that actively contribute to the overall channel capacity.

We performed Monte-Carlo simulations to study quantities that are very
difficult to compute analytically, such as the distributions of the eigenvalues
of HH† and the channel capacity. We found that when the angle spread is
small, the product of angle spread and antenna spacing perpendicular to the
direction of wave arrival is a key parameter. In general, the higher the product,
the higher the channel capacity. The BS antenna separation parallel to the
direction of wave arrival has a much less importance in determining fading
correlation unless the separation is very large. If the direction of wave arrival
is known approximately, it is advantageous to deploy a broadside linear
antenna array with a large antenna spacing; but if omnidirectional coverage is
the goal, an antenna array with a symmetric configuration, such as a hexagon
antenna array, is clearly the best choice.
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4

POWER-ALLOCATION
STRATEGIES

4.1 Introduction

The channel capacity of an (n, m) channel H subject to the autocovariance
constraint on the input signal is

In this chapter, a power-allocation strategy specifically refers to the way the
autocovariance matrix is chosen.

The objective of a power-allocation strategy is to achieve a high capacity
given the power and channel knowledge available at the transmitter.
Throughout this chapter, we assume that the total average transmit power (i.e.,
sum over all n antennas) is constrained. We consider three power-allocation
strategies: the optimum power allocation, the uniform power allocation, and
the stochastic water-filling power-allocation strategy. The choice of power-
allocation strategy depends on the type of CSI available to the transmitter.

In this chapter, power-allocation strategies are regarded as constraints on
the channel. The channel capacity with a certain power allocation strategy
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means the maximal achievable mutual information between the input and the
output given that the autocovariance matrix must be chosen according to
the particular power-allocation strategy.

If instantaneous CSI is available to the transmitter, then the optimum
power allocation can be employed [2], [9]. In many applications, however,
practical difficulties make it impossible for the transmitter to have instanta-
neous CSI. We use the term “blind transmission” to describe situations in
which the transmitter does not have instantaneous CSI. In blind transmission
systems, optimum power allocation cannot be used, and uniform power allo-
cation, which allocates equal power to each individual transmitting antenna, is
usually considered, e.g., [26]. Besides being applicable to blind transmission
systems, uniform power allocation is robust, easy to implement, and easy to
analyze.

In some situations, such as fixed wireless systems, although the trans-
mitter does not have access to instantaneous CSI, it can acquire knowledge of
the spatial correlation properties of the channel fading. This is possible
because the spatial fading correlation properties are locally stationary. For
blind transmission systems in which the channel correlation is known, we pro-
pose the stochastic water-filling power allocation strategy. The stochastic
water-filling power allocation is inspired by the conventional water-filling
procedure, and is computed using a procedure described below.

A major goal of this chapter is to examine the combined effects of the
power-allocation strategy and the fading correlation on the capacity of dual
antenna-array systems. We have demonstrated in the previous chapter that in
environments where spatial fading correlation is strong, this independent
fading idealization often leads to a significant overestimation of channel
capacity. In this chapter, the channel fading correlation is modeled using the
“one-ring” model developed in Chapter 3. This model is appropriate for typ-
ical outdoor fixed wireless applications.

We compare the channel capacities obtained in independent- and corre-
lated-fading environments with the three power allocation strategies. We will
show that if the fades are independent, for medium to high SNR, optimum and
uniform power-allocation strategies offer nearly equal capacities. Therefore,
with low fading correlation, the availability of CSI at the transmitter does not
constitute a significant advantage. In contrast, when the fades are highly cor-
related, the difference between capacities achieved by optimum and uniform
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power allocations is significant. This result motivates us to devise the sto-
chastic water-filling procedure. While it might at first seem impossible to per-
form an optimization similar to water-filling without knowledge of the
instantaneous CSI, we will demonstrate that with high probability the sto-
chastic water-filling power-allocation strategy achieves a significantly higher
capacity than the uniform power allocation in the downlink direction (trans-
mission from the unobstructed end of the link). We will also prove that in the
uplink direction (the opposite direction of downlink), the uniform power allo-
cation achieves the highest average channel capacity. This asymmetry arises
because in the “one-ring” scatterer model, one end of the link is unobstructed,
while the other end of the link is surrounded by a ring of scatterers.

The processing power available at the receiver can also influence the
choice of power-allocation strategy. For blind transmission systems, if the
transmitted data rate is increased in proportion to n, ML processing the
received signal in general leads to a complexity that increases exponentially
with n [43]. One way to reduce the receiver complexity is to one-dimension-
alize the multidimensional signal-processing task. In other words, the receiver
first derives n signals from the received signal, and then processes these n sig-
nals independently. An example is the layered space-time (LST) architecture
[26]. Note that when optimum power-allocation strategy is employed, the
(n, m) MIMO channel is automatically decomposed into an equivalent system
of min(n, m) parallel single-input, single-output (SISO) channels with i.i.d.
noises [2], [9]. Therefore, one-dimensional (1-D) signal processing is a direct
result of using optimum power-allocation strategy, and the reduction of
receiver complexity comes without loss of capacity. However, with other
power-allocation strategies, there can be a capacity penalty associated with
one-dimensionalizing. In this chapter, we examine this capacity penalty for
systems that use the uniform power allocation and the stochastic water-filling
power allocation.

The remainder of this chapter is organized as follows. In Chapter 4.2, we
present lower bounds on capacities that we use to analyze the effect of fading
correlation on channel capacity. In Chapter 4.3, we examine blind transmis-
sion systems in more detail. We propose the stochastic water-filling procedure
and demonstrate that such a nonuniform power allocation achieves a higher
capacity than uniform power allocation in the downlink direction. We also
prove that in the uplink direction uniform power allocation achieves the
highest average capacity. In Chapter 4.4, we introduce the concept of one-
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dimensional processing and quantify the associated capacity penalty. In
Chapter 4.5, we provide numerical evaluations of channel capacity for typical
configurations. We present concluding remarks in Chapter 4.6.

4.2 Power-Allocation Strategies

4.2.1 Optimum Power-Allocation Strategy

If the transmitter knows H, it can select to maximize the mutual infor-
mation in (4-1). We believe that the problem was first studied by Teletar in
[2]. For the benefit of  the readers, we briefly summarize the results here. Con-
sider that the only constraint is an average power constraint, i.e.

Given a channel realization H, the channel capacity is

The channel capacity is achieved by zero-mean complex Gaussian inputs
whose covariance matrix maximizes the objective in (4-2). Henceforth in this
chapter, we will set To demonstrate how to compute this optimum
autocovariance matrix let the singular value decomposition representa-
tion of H and be respectively.
Substituting these in (4-2), the objective now becomes

It is known that choosing maximizes (4-3) [2]. Substituting
into (4-2), the capacity now becomes
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The matrix that maximizes the summation term in (4-4) is the classical
water-filling solution [8]:

were denotes the larger of 0 and and is chosen such that
Therefore, the optimum power allocation is

The transmitted signal s can be visualized as being obtained by filtering a
complex Gaussian n-tuple x with independent entries, as is illustrated in Fig.
4-1. The kth component of has variance In this chapter, the
term power allocation refers not only to the choice of    – the distribution of
power among the components of x – but also to the choice of the unitary
transformation that transforms x into s. The columns of constitute an
orthonormal basis in an n-dimensional space; thus we will refer to as the
“transmit basis”. For convenience, we will refer to the transmit basis of the
optimum power allocation as the “optimum transmit basis”.

When the transmitter employs it leads to a significant advan-
tage, i.e., the receiver can utilize one-dimensional signal processing without
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loss in capacity [2]. To see this, refer to Fig. 4-1. Let x be an vector
whose components are independent complex Gaussian random variables with
variance The vector x is filtered by the unitary transformation to
generate the transmitted vector s. The receiver, which also knows the channel,
can filter the received signal r by a unitary transformation Substituting

and into (2-2), we obtain a set of n
single-input, single-output linear subchannels with i.i.d. AWGN:

Clearly, maximum-likelihood estimation of from involves only one spa-
tial dimension.

4.2.2 Uniform Power-Allocation Strategy

In the uniform power allocation, the covariance matrix of is chosen to
be This can done by choosing There is no
constraint placed on the selection of transmit basis all unitary lead to

Given the constraint that the
capacity can be obtained by substituting into (4-1),

Because the capacity does not depend on the transmit basis uniform power
allocation can be used in applications in which the transmitter does not know
H.

With uniform power allocation, because the n components of  s are statisti-
cally independent with the same power, one can treat these n components
symmetrically without having to apply different coding, modulation, and
signal processing techniques on these n components. Thus it may be desirable
from a practical point of view to distribute power uniformly, even when CSI is
available at the transmitter. In this case, though the choice of transmit basis
does not affect capacity, the optimum transmit basis can still be used to take
advantage of the capacity-lossless decomposition of the MIMO channel into
SISO subchannels.
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4.2.3 Effects of Fading Correlation

The spatial fading correlation cov(H) determines the distribution of the
singular values of H which, in turn, determines the distribution of the capacity
specified by (4-4) and (4-7). We have shown in Chapter 3 that deriving a
closed-form expression for the distribution of the singular values of H is at
best tedious and is usually impossible. Here, we study the effects of cov(H) on
capacity using a capacity lower bound for the capacity. This lower bound is
reasonably close to the exact capacity and leads to useful insights.

Let us review briefly the results on spatial fading correlation. According
to the “one-ring” model, in the downlink direction the covariance matrix of H
can be well approximated by where stands for
matrix Kronecker product. The constant matrix can be computed from the
physical parameters of the antennas (e.g., antenna spacing), and of the multi-
path environments (e.g., angle spread). The distribution of the channel matrix
H is therefore well approximated by the distribution of and for
the downlink and uplink, respectively, where

Expressing the channel H as a “colored” version of a white channel
enables us to make use of the following properties of matrices with i.i.d. cir-
cularly symmetric complex Gaussian matrices:

• For any unitary matrices U and V, the distribution of
is identical to that of [2].

• Let the QR decomposition of be The squared
amplitude of the kth element on the diagonal of is
chi-squared distributed with degrees of freedom, and
that all the diagonal and upper-diagonal entries of are mutually
independent [29]. Note that due to the fact that the real and imaginary
parts of any entry of are independently Gaussian distributed with
variance 1/ 2, the expected value of a chi-squared random variable
with 2l degrees of freedom is l.

Consider a downlink communication, in which In (4-1), we
substitute for H by and use the singular value decomposition

and the QR decomposition We obtain

Team LRN



52 Chapter  4

By arbitrarily choosing we can formulate a lower-bound of
(4-8):

Equation (4-9) indicates that the capacity with optimum power allocation
is lower-bounded by the maximal combined capacity of the following system:

n SISO subchannels
where

• is chi-squared distributed with degrees of
freedom,

• is zero-mean circularly symmetric complex Gaussian with variance

• is zero-mean circularly symmetric complex Gaussian with vari-
ance and

• all random variables mentioned and  are mutu-
ally independent.

Given and the capacity of this system is again maximized by a water-
filling solution

It is clear that the effect of fading correlation on the capacity lower bound
is to scale the power gain of the kth subchannel by When the fades
are i.i.d., for all k and these n subchannels are scaled equally.
When the fades are correlated, the gains of some channels are enhanced while
those of others are reduced, because the trace of is equal to n. In the
uplink, this interpretation no longer applies, as will be shown in Chapter 4.4.
Nevertheless, because the singular values of H and H' are the same, the net
effect of fading correlation on capacity when optimum or uniform power-allo-
cation strategy is employed is exactly the same as that in the downlink. The
effects of fading correlation on the distribution of the ordered eigenvalues of
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is observed to enhance the first few largest eigenvalues and decrease
the rest as well (Chapter 3.4).

4.2.4 Asymptotical Behavior of Channel Capacity with Optimal
Power Allocation

We have shown in Chapter 2 that, with uniform power allocation, under
the independent fading assumption, the ratio of capacity to the number of
antennas of an (n, n) channel converges almost surely to a nonzero constant.
Here we will show that with optimum power allocation the ratio of capacity to
the number of antennas also converges almost surely to a nonzero number,
which is a function of SNR. This result is due to Chuah, Kahn, and Tse [9].

Consider a given n. We randomly generate an instance of an
channel whose entries are i.i.d. Let be the empirical distribu-
tion of the eigenvalues of That is, is defined as the fraction of
the eigenvalues of that is less than or equal to Note that is a
function of and is a random function. The following theorem describes the
asymptotical property of as

Theorem. Define Then almost surely, converges to a
nonrandom distribution G* , which has a density given by

We have already made use of this theorem in Chapter 2. Using this theorem,
the asymptotic performance of channel capacity with full CSI at the trans-
mitter can be derived as well.

Theorem. Denote the channel capacity with full CSI at the transmitter given
channel H by Almost surely,

where
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and satisfies

The results in (4-12) and (2-7) can be combined to obtain the benefit of
optimal power allocation over uniform power allocation when [9].
When and Using L’Hopital’s
rule, it can be shown that at low SNR,

At high SNR,

4.3 Blind Transmission Systems

A blind transmission system cannot employ optimum power-allocation
strategy due to the lack of instantaneous CSI. Although uniform power-allo-
cation strategy can be used to achieve robust performance against channel
uncertainty, if the spatial fading correlation is high it results in a significant
loss in capacity when compared to using optimum power-allocation strategy.
Conceptually, the capacity loss arises mainly because, with a uniform power
distribution, part of the transmitted power is allocated to subchannels with
low gains. The goal of this section is to devise a nonuniform power allocation,
which we refer to as stochastic water-filling power allocation, that avoids this
inefficient use of power.
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The key assumption here is that while transmission is blind, the trans-
mitter does know the spatial fading covariance cov(H). Because spatial fading
statistics is locally stationary, and hence varies much more slowly than the
channel itself, in many applications it is realistic for the transmitter to acquire
this knowledge. In the following, the downlink and uplink scenarios are
studied separately. Although the direction of transmission does not affect the
performance and applicability of both optimum and uniform power-allocation
strategies, we will show that, due to the structure of the spatial fading covari-
ance, the stochastic water-filling power allocation achieves a higher average
capacity than the uniform power allocation only in the downlink.

4.3.1 Stochastic Water-Filling in the Downlink

We study this power allocation problem using the capacity lower bound.
Let the power allocation be Note that neither nor can
be a function of H. Let the QR decomposition of the matrix product be

Similar to (4-8), the capacity is lower-bounded by:

The RHS of the inequality (4-16) is the sum of the capacities of n SISO sub-
channels with power gains Comparing
equations (4-8) and (4-16), when the CSI is not available to the transmitter,
there is a penalty due to the mismatch of the transmit basis with the channel.
Because is unknown to the transmitter, instead of directly maximizing the
RHS of (4-16), the transmitter chooses and to optimize a chosen statis-
tical property of the RHS of (4-16). The optimal choice of power allocation
without CSI is still an open question. In the following, we describe a two-step
approach to determine a good choice of power allocation

The transmitter first chooses the transmit basis Note that because
is decreasing in k and is chi-squared distributed with

degrees of freedom that are decreasing in k, to achieve the highest average
capacity one must choose such that is also decreasing in k.
Consider choosing according to the following greedy procedure. The set of
unitary matrices that yield the highest value of is first identified.
We then find the largest subset of this set whose members yield the largest
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value of , and so on. The procedure ends when we finally obtain
the set whose member yield the largest value of . It can be easily
shown that belongs to this set. If is used,

In principle, once is selected, we can calculate the corresponding
that maximizes some chosen statistical property of channel capacity. A rea-
sonable choice is to maximize the expectation of the upper-bound of the right-
hand side of equation (4-16). Recall that is chi-squared distrib-
uted with 2(n – k+1) degrees of freedom, so that

Furthermore, because

The power allocation that maximizes the term to the right of equality in (4-17)
is again solved using the water-filling procedure. That is,

In summary, the transmitter chooses according to the greedy
criterion, and it distributes power according to (4-18). We will refer to such a
practice as stochastic water-filling. The stochastic water-filling power alloca-
tion can provide capacity improvement in highly correlated fading environ-
ments. We will compare the capacity achieved by stochastic water-filling
power allocation with those achieved by optimum and uniform power alloca-
tion strategies in Chapter 4.5.

4.3.2 Optimality of Uniform Power Allocation in the Uplink

Unlike the downlink direction, uniform power allocation achieves the
highest average capacity in the uplink direction.
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Lemma. For any positive semi-definite diagonal matrix and the distri-
bution of singular values of the matrix is identical to that of the
matrix where M  is   any square permutation matrix, i.e. exactly
one entry in each column and each row is equal to one and the other entries
are zero.

Proof. The lemma is evident because that the distribution of is identical to
the distribution of and that the singular values of  X and XM are iden-
tical for any matrix X.

To show the optimality of uniform power allocation, we substitute
for H in (4-1):

where The goal here is to prove that achieves the
highest expected value of the RHS of (4-19). Consider a particular choice of
nonnegative diagonal matrix Let denote the n! pos-
sibly distinct diagonal matrices whose diagonal entries are permutations of
the diagonal entries of According to the lemma, using any one of the
in (4-19) leads to the same capacity distribution. The mean value of capacity
using is upper-bounded by

The inequality in (4-20) results from the concavity of the logarithm function.

4.4 Capacity Penalty From One-dimensional
Processing of Multi-dimensional Signals

In blind transmission systems, because the optimum transmit basis is not
known by the transmitter, the capacity-lossless decomposition of the MIMO
channel into n SISO subchannels outlined in Chapter 4.2.2 is not possible.
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Nevertheless, it is still desirable to extract individual observations of the com-
ponents of x from the received signal, thereby one-dimensionalizing the
inherently multi-dimensional signal-processing problem, as long as the pen-
alty in capacity is not too high. This is essentially a trade-off between receiver
complexity and required SNR. The study of this problem was pioneered by
Foschini, who showed that the capacity penalty per spatial dimension associ-
ated with the layered space-time (LST) architecture approaches zero as n
approaches infinity in an independent fading environment [26].

In this section, we focus on blind transmission systems that employ one-
dimensionalization techniques. The main goal is to investigate the capacity
penalty associated with one-dimensionalization in systems that use stochastic
water-filling and uniform power-allocation strategies. As will be pointed out
later in this section, the study of one-dimensionalization techniques gives
operational explanations to the capacity lower bounds (4-9) and (4-16).

4.4.1 ZF and MMSE Successive Interference Cancellation

We again start with the relation between x and r shown in Fig. 4-1:

In the following, we omit the subscript for simplicity. To derive individual
observations of the components of x, the simplest scheme is to multiply r by
the inverse1 of

Clearly, the kth component of r' – the observation of  is corrupted by
additive noise. Because the observation of contains no interference from
other components of x, this is referred to a zero-forcing (ZF) channel inver-
sion. Directly inverting the channel, as in (4-22), can lead to deleterious noise
enhancement. To alleviate noise enhancement, one can use successive inter-
ference cancellation (SIC) in conjunction with channel inversion. In SIC, the
receiver extracts the observations of one-by-one, following
some specific order. After obtaining the observation of the receiver makes

1. When m > n, use the left pseudo-inverse of instead of the inverse.
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a decision on and cancels out the contributions of in r. We assume here
that the observations of are extracted in order of descending k. A mathe-
matical representation of combined ZF channel inversion and SIC is as fol-
lows. We denote the QR decomposition of by The
receiver first passes the received signal r through to obtain an n-tuple y,

where is an n-tuple whose distribution is identical to that of v. Note
that because R is upper triangular, excluding the noise component, is a
linear combination of The contributions of in

are canceled using SIC. Assuming that there are no errors in the cancella-
tion process, the individual observations of are:

Let the variance of be The signal to noise ratio of is

The block diagram of ZF SIC is shown in Fig. 4-2. Although we have chosen
to detect in order of descending k, by re-ordering the prior to detection,
our analysis is applicable to detection in any order. A prototype dual antenna-
array system utilizing ZF SIC has been demonstrated [5].
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We can also use other channel inversion criteria, such as the minimum
mean-squared error (MMSE) criterion, in conjunction with SIC. To obtain the

linear MMSE estimate of from r, one partitions as

Equation (4-22) can be written as

Let The linear least-square estimate of  is

and the error variance in is

Let denote the decision made on We then replace by by
and r by in (4-26) to (4-28) to obtain the linear least square

estimate of . The process is repeated until all n elements of x have been
observed.

In the subsequent analysis, we assume that the receiver uses ZF SIC.

4.4.2 Downlink Analysis

The distribution of capacity is determined by the distributions of
defined in equation (4-25). Similar to the derivations in

Chapter 4.3.1, in the downlink direction, the distribution of can be easily
shown to be identical to that of by substituting for H and
the QR decompositions of and

Substituting into (4-23), noting that , we
have:
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The interference-free observation of is

The downlink capacity with ZF SIC is thus distributed as

By comparing (4-31) with (4-16), we can explain the capacity lower
bound in (4-16) as the capacity achieved with a suboptimal processing archi-
tecture (ZF SIC) at the receiver. The stochastic water-filling power allocation
derived in (4-18) can be employed here to achieve a capacity higher than uni-
form power allocation.

4.4.3 Uplink Analysis

Similar to the above analysis, we substitute H by in (4-21) to
obtain the distributions of for the uplink. Because  does not affect the
distribution of can be simply chosen as the
identity matrix. Equation (4-21) becomes

To highlight the differences between the distributions of in the uplink and
downlink, we will use a different mathematical representation of SIC. Substi-
tuting into (4-32) and then premultiplying by on
both sides of (4-32), we get

where u is an additive white Gaussian noise vector with covariance
The autocovariance matrix is random and is inde-

pendent of Because is, in general, not diagonal, the components of
noise u are, in general, not independent. Equation (4-33) can be written com-
ponent-wise as
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{interference from

When the receiver makes the decision on it also obtains an estimate on the

used to form a minimum mean square estimate of which is simply the
conditional expectation of given because are
jointly Gaussian. In other words, in this formulation, besides canceling the
interference term in (4-34), SIC also removes the predicted noise component.
The interference-free observation of provided by SIC is thus

The signal power in To obtain the noise variance, we
partition

The variance of noise in is

which is a function of and thus is itself a random variable.

The difference in the uplink and downlink is apparent when (4-30) and (4-
35) are compared. The distributions of the signal power gain, , are
the same. In the downlink, the noise power is a constant. In con-
trast, in the uplink, the noise power as formulated in (4-35) is random and can
be much larger than its counterpart in the downlink. Furthermore, the variance
of the noise power can be much higher than the variance of the signal power
gain (Note that is independent of )

For example, under the correlated fading profile used in Chapter 4.5, with
n = 16, in the downlink the standard deviation of is the standard deviation
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of which is 1.26 dB for k = 5. In the uplink, the standard devia-
tion of  is the standard deviation of which is 7.2 dB for k

The high variability of have a profound implication on the system
design. The channel codes applied on must be designed to sustain a
good performance even when the channel realization is adverse, which has a
much higher probability in the uplink due to the higher variance of One
solution is to employ channel codes on the sequences , rather
than on [26].

4.5 Capacity Results

In this section, we present the channel capacities and their respective
lower bounds for two extreme fading correlation situations. In the first, that of
independent fading, all the components of H are i.i.d. In the second, that of
strongly correlated fading, we use the following parameters in the “one-ring”
model. We assume that linear antenna arrays are used, with a transmitting
antenna spacing of two wavelengths. The angle of arrival is 0°, and the angle
spread is 0.6°.

For each configuration, 10,000 independent random channel realizations
are generated to obtain the histograms of the investigated quantity. Specifi-
cally, for the correlated fading scenario, we first obtain B using the scatterer
model parameters specified above. The channel samples are then generated by
multiplying independent, randomly generated by . We use the Monte-
Carlo approach here because closed-from expressions for the distributions of
channel capacity are very difficult to derive.

An important performance measure for a dual antenna-array system oper-
ating in this burst mode is the capacity at a given outage probability q,
denoted as In other words, the probability that the channel capacity of a
randomly chosen H is lower than is q. In this chapter, comparisons among
different schemes will be presented, when possible, based on the capacity at
ten-percent outage, We will sometimes use the average capacity as a cri-
terion for comparison.

In Fig. 4-3, we plot vs. n at while in Fig. 4-4, we
plot vs. SNR for n = 16. From these two figures, we can observe the fol-
lowing:
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1. It has been established that asymptotically the average capacity per
spatial dimension converge to a constant depending only on SNR [9], [26].
From Fig. 4-3, we see that with independent fading, the relationship between

and n is approximately linear even when n is small.

2. Fading correlation can significantly reduce This can be explained
using (4-9) by noting that in this setting when the largest singular value
of is more than 20dB higher than the fourth largest one. Thus in the

capacity lower bound (4-9), the transmit power allocated to the kth sub-
channel for is not effective in conveying information.

3. The difference between capacities with optimum power allocation and
with uniform power allocation is significant only when the fading correlation
is high. This implies that the additional complexity of optimum power alloca-
tion over uniform power allocation is justified only if the fades are strongly
correlated.
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In Fig. 4-5, we compare channel capacities and their corresponding lower
bounds computed using (4-9). The lower bound is seen to be reasonably close
to the capacity throughout the SNR range that we consider, in both indepen-
dent and correlated fading environments. In particular, when the fades are
highly correlated, with uniform power allocation the curve and its lower
bound are very close.

In Fig. 4-6, we also plot the capacity lower bounds (the dashed curves).
They represent the capacities achieved with a ZF SIC receiver using uniform
and stochastic water-filling power allocation assuming that is chosen.
The gap between the dashed curve and the corresponding solid curve indi-
cates the capacity penalty due to one-dimensionalization. The penalty is not
significant for the range of parameters that we consider.

4.6 Summary

In this chapter, we studied three power-allocation strategies for dual
antenna-array systems, using primarily the information-theoretic capacity as
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the performance criterion. Specifically, we focused on the performance of
dual antenna-array systems in environments where the fades are highly corre-
lated. In general, with medium-to-high SNR, the higher the fading correlation,
the lower the capacity.

When the transmitter knows the instantaneous channel realization,
optimum power allocation, which achieves the highest capacity throughput
that the particular channel realization supports, can be used. Optimum power
allocation refers to the use of a particular transmit basis and a power distribu-
tion that is computed using the water-filling algorithm.

Although uniform power allocation does not achieve a capacity as high as
optimum power allocation, it offers many practical advantages. One major
advantage is that the capacity is not dependent on the choice of transmit basis,
making uniform power allocation suitable for blind transmission systems.
Furthermore, when the fades are i.i.d., the difference between the capacities
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achieved by optimum and uniform power allocations is small. However, when
the fades are correlated, the difference can be large.

We have demonstrated a nonuniform power allocation that achieves a
capacity close to that achieved by optimum power allocation in the downlink
when the fading correlation is high. This power allocation is calculated via the
stochastic water-filling procedure, which requires the transmitter to know
only the fading statistics, not the instantaneous channel realization. Our con-
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clusion is that on the downlink a blind transmission system can employ uni-
form power allocation when fading correlation is low and stochastic water-
filling power allocation when fading correlation is high, and can thereby
obtain performance close to the optimum power allocation. On the uplink,
however, uniform power allocation achieves the highest average capacity for
blind transmission systems.

We also extended our analysis to systems that employ techniques such as
SIC to reduce the receiver complexity. The key idea is to one-dimensionalize
the inherently multi-dimensional signal processing task. Our result shows that
the capacity penalty incurred by using ZF SIC is small over the range of phys-
ical parameters and power-allocation strategies that we considered.
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5
Layered Space-Time Codes:

Analysis and Design Criteria

5.1 Introduction

In the previous two chapters, we focus on unveiling the potential of dual
antenna-array systems. We have shown that asymptotically if the fades are
independent and if , the average channel capacity of an (n, m) channel is
O(n).

In practice, channel codes are necessary to provide a throughput that is
close to capacity with a reasonable error probability. Because the transmitter
has multiple transmit antennas, the channel codes to be employed also has
multiple spatial dimension. Thus, these channel codes are referred to as space-
time codes. In this chapter, we are interested in space-time codes whose
throughput is proportional to n, assuming that . In other words, when
such a space-time code is used in an (n, m) system, the bit-rate of the system
scales linearly in n. This assumption on bit rate will be made implicitly
throughout this chapter. We will not consider the class of space-time codes
that maintain a throughput independent of n; e.g., [31] - [33], and the smart-
greedy codes [34]. The goal of these codes is to leverage the transmit diversity
to reduce the required SNR.

An important consideration for space-time codes is the decoding com-
plexity. In many applications, the number of antennas can indeed be very
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large. Assume, for simplicity, that n = m. Consider a family of nontrivial
space-time codes whose throughput is proportional to n. As will be shown in
Chapter 5.2, the complexity of decoding such a space-time code according to
a maximum-likelihood (ML) criterion is generally exponential in n. When n is
large, space-time codes that admit low complexity (suboptimal) decoding
algorithm are very desirable.

In this chapter, we propose a class of space-time codes whose throughput
and decoding complexity scale linearly and quadratically with n, respectively.
Such a space-time code is constructed based on the layered space-time (LST)
architecture proposed by Foschini in [26]; therefore, we refer to this class of
space-time code as an LST code. There are two types of LST architectures:
horizontally layered space-time architecture (HLST) and diagonally layered
space-time architecture (DLST). In addition to low decoding complexity, LST
codes offer the advantage of utilizing the established 1-D codec technology.
The use of a suboptimal decoding scheme, however, does incur a power pen-
alty compared to ML decoding. To date, studies on LST codes have focused
on the information-theoretic considerations. Another class of codes that has
been proposed as low-complexity space-time codes is the class of codes that
admit multistage decoding [34] [35].

In this chapter, we first analyze the error performance of LST codes. We
consider both slow and fast fading environments, as well as both high and low
SNR regimes. We derive the key parameters that dominate the error perfor-
mance, and propose design criteria for LST codes. From the error analysis, we
find that DLST outperforms HLST in slow fading environments. For DLST
codes, the optimum trade-off among several design parameters is presented.
We also quantify the power penalty incurred by LST decoding compared to
ML decoding.

We then examine the operational aspects of DLST codes, specifically the
use of block codes and convolutional codes as the constituent codes for DLST
codes. With convolutional constituent codes, we will show that the original
DLST architecture does not lead to satisfactory performance. We propose the
single-stream structure as the solution. For block constituent codes, we show
that permuting the order of symbols in a block codeword results in dramatic
differences in performance. Therefore, the optimum permuting order should
be employed. The error analysis and design criteria for these modified LST
codes are provided. These solutions achieve greatly improved performance.
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The remainder of this chapter is organized as follows. In Chapter 5.2, the
notation of space-time codes is introduced. We also provide the error proba-
bility analysis for ML decoding. In Chapter 5.3, we introduce the LST archi-
tecture, in particular the HLST and DLST architectures. The decoding
complexity of LST codes is shown to be quadratic in n. In Chapter 5.4, we
analyze the performance of LST codes. We demonstrate that DLST is superior
to HLST, especially in slow fading environments. The design criteria,
optimum design choices, and penalties associated with the suboptimal
decoding mechanism are presented. In Chapter 5.5, we examine the opera-
tional aspects of DLST codes, and propose the modified structures to achieve
improved performance. We also present example DLST codes. We give con-
cluding remarks in Chapter 5.6.

5.2 Space-Time Codes

5.2.1 Notation

Consider the encoding process first. The encoder at the transmitter applies
the channel code to the input information bits to generate an n-row (possibly
semi-infinite) matrix C. The kth row, column element of C, denoted by
represents the signal to be transmitted by antenna k at time slot Such a
channel code differs from conventional channel codes in that it involves mul-
tiple transmit spatial dimensions. To emphasize this distinction, it is referred
to as a space-time code.

At the receiver, during the time slot the receiving antenna l receives a
. This received signal contains a superposition of transmitted sig-

and an AWGN component For a narrow-
band flat-fading channel, the gain connecting transmitting antenna k and
receiving antenna l at time
define the vectors

The discrete-time, input-output relation of the (n, m)
dual antenna-array system over a narrowband flat-fading channel can be
written in the following vector notation:

In this chapter, we will always assume that
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The following terminology is used in this chapter. The matrix C, which is
the coded matrix output of the transmitter encoder, is referred to as a space-
time codeword matrix. A space-time codeword matrix can be thought of as a
serial concatenation of n-tuples, and an n-tuple is composed of n symbols.
Note that the first row of the matrix C is indexed as row zero, not row one.

To facilitate the comparison between dual antenna-array systems using
space-time codes and single transmit-antenna systems using conventional 1-D
channel codes at equal average transmit powers (total over all transmit
antennas), the average energy of an n-tuple is E, regardless of the spatial
dimensionality n.

5.2.2 Space-Time Codes with ML Decoding: Performance and
Complexity

ML decoding is optimum in terms of achieving the lowest error proba-
bility. In the following, expressions for the error probability of a space-time
code with ML decoding are given. These will be used as a reference to quan-
tify the performance of other decoding mechanisms. The error probability
with ML decoding has been derived independently by Tarokh et. al. [34] [35]
and Guey et. al [36]. The special case when n = 1 was derived even earlier by
Divsalar and Simon [37] [38]. Our matrix notation leads to an elegant deriva-
tion; see Appendix I.

Let C and E be two distinct space-time codeword matrices. Suppose that
C is the transmitted space-time codeword matrix. The average pairwise error
probability between codewords C and E, denoted by is the
average probability that the likelihood of received signal given E is higher
than that of the received signal given C. Here, the average is taken over
random realizations of H. In a fast fading environment, is
upper-bounded by

In a slow fading environment, is upper-bounded by
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where are the eigenvalues of the matrix

Although ML decoding achieves the lowest error probability, the com-
plexity of implementing ML decoding may be a concern. Consider space-time
codes that encode an + o(n) bits per n-tuple, where a is a positive constant.
The complexity of ML decoding is generally exponential in n. To see this,
consider the log likelihood of receiving when an n-tuple is transmitted.
The log likelihood is an affine function of For a non-trivial H,

cannot be further reduced; thus an exhaustive search among the
possible choices of is required. It is mainly the high complexity

of conventional ML decoding that motivates the study of space-time codes
whose structure allows for efficient ML decoding or low complexity subop-
timal decoding that does not incur a significant degradation in error perfor-
mance.

5.3 Layered Space-Time Architecture

In this section, we present a brief summary of the layered space-time
(LST) architecture [26].

5.3.1 Encoding

In the LST architecture, the multi-spatial dimensional signal is obtained
by spatially multiplexing 1-D signals, or more generally space-time signals
with a spatial dimension l such that l divides n, in a systematic fashion with
the goal of reducing the receiver complexity.

The encoding process is illustrated in Fig. 5-1. The first step is to generate
the 1-D signals. In Fig. 5-1 (a), the input information bit sequence is first
demultiplexed into n subsequences, and each subsequence is subsequently
encoded by a 1-D encoder. These 1-D channel codes are referred to as the
constituent codes. The output of the constituent coder k is a sequence of sym-
bols

The second step is to designate when, and from which antenna, a coded
symbol, say is to be transmitted. One intuitive assignment rule is to
always transmit the output coded symbol from constituent encoder k using the
transmit antenna k. This is illustrated in Fig. 5-1 (b). Under this assignment
rule, the space-time codeword has an obvious horizontally layered structure. It
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is called the horizontally layered space-time (HLST) architecture. HLST was
originally proposed by Foschini in [26]. Another assignment rule, also pro-
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posed in [26], is the diagonally layered space-time (DLST) architecture. In
DLST, instead of always feeding the output symbols from a constituent coder
to a particular transmit antenna, they are fed to the n transmitting antennas in
turn. The practice of rotating the roles of antennas is called cycling. DLST is
illustrated in Fig. 5-l(c).

If a coded symbol s is to be transmitted at time from antenna k, in our
notation it is equivalent to assigning the component of the transmitted
space-time codeword matrix C to be s. An informal way of saying this is that
the symbol s is used to fill the slot of C. In HLST, the output of the
constituent coder k is used to fill the kth row of the codeword matrix C, i.e.,

In DLST, the outputs of the constituent coders are used to fill the
NW-SE diagonals of C from left to right in turn. Specifically, the output of the
constituent coder k fills the (k +l · n) th diagonals of C, where l = 1, 2,....

5.3.2 Decoding

At the receiver, the received signal is a superposition of transmitted coded
symbols scaled by the channel gain and corrupted by AWGN. Instead of
decoding the n constituent codes jointly, in the LST architecture, interference
suppression and interference cancellation are employed so that the constituent
codes can be decoded individually.

Consider the processing along the spatial dimension first. Let us focus on
a given instance in time, say The transmitted n-tuple is and the received
m-tuple is . The goal here is to determine the values of the n
components of i.e. with the only available information
being In the LST architecture, the decisions on the values of these n
components are made sequentially according to a pre-determined order.
Without loss of generality, in this chapter we assume that the decision order is
in descending order of the superscript of

The symbol is the first one to be decided. To decide the value of the
symbol , a decision variable, denoted by is extracted from the
received signal This decision variable should contain a low level of
interference from other symbols Hence, this operation
is often referred to as interference suppression. The decision on is then
made. Making use of the decision on the receiver can modify the
received signal by removing the contribution of to it. This modifying
operation is referred to as interference cancellation. The process of extracting
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a decision variable, making a decision on the value, and modifying the
received signal is repeated for the remaining symbols

The decoding algorithm in the LST architecture utilizes the spatial pro-
cessing described above and exploits the temporal redundancy of the constit-
uent codes to provide reliable decisions. To decode an HLST code, the
receiver first extracts the decision variables for the symbols of the bottommost
row of C. The resulting decision variable sequence, is
used by a conventional 1-D decoder of the corresponding constituent code to
produce the decisions on the symbols of this row. The receiver then uses the
decision to modify the received signal sequence and then proceeds to
decode row n – 2, n – 3, and so on. In short, the HLST codeword matrix C is
decoded row by row, or layer by layer, from bottom to top.

A DLST code is also decoded layer by layer. The difference is that the
layer is oriented diagonally rather than horizontally. Consider a DLST code-
word matrix C, as shown in Fig. 5-2. The entries of C below the first NW-SE
diagonal are zero. The entries on the first diagonal are thus the undetected
symbols of the highest row numbers in their respective columns. To decode
the DLST code, the receiver first generates a decision variable for each of the
entries on the first diagonal. These decision variables are used by a corre-
sponding 1-D decoder to decode this diagonal. The decision is then fed back
to remove the contribution of these symbols to the received signal. The
receiver then continues to decode the next diagonal.
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Suppose that the rate of the constituent code is fixed, regardless of the
number of antennas. The HLST codes and DLST codes obviously offer an
overall data rate proportional to n. The decoding complexity of LST codes
includes two contributions. The complexity of the spatial processing is on the
order of operations per transmitted n-tuple if linear operations,
such as those described in the next section, are employed. The complexity of
decoding the n constituent codes can be estimated to be n times the com-
plexity of decoding a typical constituent code. Clearly LST decoding requires
much less complexity than ML decoding.

5.4 Error-Probability Analysis For Layered Space-
Time Codes

5.4.1 Expressions for the Decision Variables

In the previous section, we have shown that the LST decoding consists of
three steps: interference suppression, constituent code decoding, and interfer-
ence cancellation. There are many schemes that can be used for interference
suppression. The choice of interference suppression scheme will affect the
decoding performance. In this chapter, we focus on linear zero-forcing (ZF)
interference suppression because it leads to a tractable analysis. At high SNR
and large n, the performance with linear ZF interference suppression is very
close to that with linear MMSE interference suppression [39].

The mathematical formulation of linear zero-forcing (ZF) interference
suppression is as follows. We focus on a given instance of time, and we drop
the time index for simplicity. Let the QR decomposition of the channel H be
H = UR, where U is a unitary matrix and R is an upper triangular matrix. We
left-multiply the received signal r by to obtain an m-tuple y,

where is an m-tuple of i.i.d. noise components. Because
R is upper triangular, for any given row number k, k = 0, 1,..., n – 1,

The interference term in (5-5) is independent of . That is, the
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interference from these symbols is suppressed. We can remove the interfer-
ence term in to obtain the decision variable for using the decisions on

Assuming that these decisions are all correct, is

The power gain is a quantity that depends on the random channel real-
ization. It has been shown that, if the channel matrix H has i.i.d. circularly
symmetric complex Gaussian entries, are indepen-
dently chi-squared distributed with 2(m – k) degrees of freedom [28]. This is
an important result that will be used repeatedly in our analysis.

The relationship between and in (5-6) can be interpreted as the input-
output relation of a SISO channel with power gain and AWGN.
Because the gains are independently chi-squared distributed with
2(m – k) degrees of freedom, one can interpret (5-6) as the transmission of a
symbol over a (1, m – k) receive diversity system to form the decision vari-
able with the use of maximal-ratio combining [40]. This implies an intuitive
interpretation that, assuming there are no errors in the feedback of symbol
decisions, the kth row of an LST codeword matrix is transmitted over a
(1, m – k) system without interference from the other rows of the codeword
matrix, and all fades are i.i.d.

5.4.2 Performance of HLST Codes

Consider the kth row of an HLST codeword C. Let denote the actual
transmitted symbol sequence on this row, and denote a distinct possible
transmitted symbol sequence. Conditioned on the channel realization

the probability that the likelihood of transmitting is
higher than is

where the matrix comes from the QR decomposition of i.e.,

Team LRN



Layered Space-Time Codes 79

This is the conditional pairwise error probability between
and . The average pairwise error probability can thus be upper-bounded
by taking the expected value of the right side of (5-7) over the distribution of

which is a chi-squared distribution with 2(m – k) degrees of
In a fast fading environment, the are i.i.d. for distinct T.

The average pairwise error probability, can be upper
bounded by:

where In a slow fading environment,
for all and can be upper bounded by:

5.4.3 Performance of DLST Codes

DLST codes are decoded diagonal by diagonal. Here we consider the
probability of a diagonal decision error. Consider the first diagonal of a DLST
codeword. On this diagonal, the transmitted symbols are

The probability that, under the DLST decoding algo-
rithm, the likelihood of a distinct diagonal is higher
than that of the transmitted diagonal conditioned on
the channel realization is
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Equation (5-10) applies in both fast and slow fading environments because the
are i.i.d. for

The upper bound of the average pairwise error probability is again
obtained by taking the expected value of the right-hand side of (5-10). When
the SNR is high,

where When the SNR is low, i.e.
for all because for small

product mx, (5-10) can be approximated by

where is an arbitrarily small positive number. In Appendix II at the end of
this chapter, we provide an exact calculation of the average pairwise error
probability. A new definition of Q-function is used so that bounding the con-
ditional error probability with the Chernoff bound is not
necessary.
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5.4.4 Performance Comparison: DLST vs. HLST

When the performance of HLST and DLST in a slow fading environment
are compared, we identify the major shortcoming of the HLST architecture.
Let us compare (5-9) and (5-11) in the high SNR regime. For an HLST code,
the average pairwise error probability of the bottommost row is inversely pro-
portional to the (m –n + l)th power of SNR. In contrast, in DLST, the
average pairwise diagonal error probability between two diagonals c and e is
inversely proportional to the power of SNR. Therefore,
if constituent codes of equivalent complexity are deployed,
the error probability of a DLST code in a slow fading environment can be
much lower than that of an HLST code.

The difference between the performance of DLST and HLST can be
explained in an intuitive fashion. We have shown that, under the LST architec-
ture, the rows of a codeword matrix can be thought of as being individually
transmitted over (1, m - k) diversity reception systems with independent
fading. For an HLST code, the output from a constituent code occupies a par-
ticular row, thus only uses one of these virtual diversity reception systems.
The constituent code transmitted using the bottommost row experiences only
(m – n + 1) receive diversity and could become the performance bottleneck.
On the other hand, in the DLST architecture, the output from a constituent
code is transmitted over the n virtual diversity reception systems in turn.
Because the fades associated with these virtual systems are independent, uti-
lizing these systems in turn provides another form of diversity.

Another advantage of DLST over HLST is that in DLST the constituent
codes can be just the same code. By contrast, in HLST, because the orders of
receive diversity experienced by different constituent codes are different, to
efficiently utilize the benefit of receive diversity, lower-rate codes must be
used for the lower rows and higher rate codes for the upper rows. In light of
these advantages, thereafter in this chapter we will only consider DLST codes.

5.4.5 DLST Codes: Design Criteria and Trade-offs

We propose the following design criteria for DLST codes, making use of
equations (5-11) and (5-12).

• We define the truncated multi-dimensional effective length (TMEL) and
the truncated multi-dimensional product distance (TMPD) between two
distinct diagonals c and e as

Team LRN



82 Chapter 5

At high SNR, the pairwise error probability between c and e is approximated
by The code design criterion is
to maximize the minimum value of over all pairs
of distinct diagonals. If the exact operating SNR is not known but can be
assumed to be reasonably high, a good design criterion is to maximize the
minimum two-tuple (TMEL, TMPD) in dictionary order.

• At low SNR, the pairwise error probability is approximated by (5-12). We
define the exponent be the truncated
multi-dimensional between c and e.
The code design criterion at low SNR is to maximize the minimum
TMED between any pair of distinct diagonals.

In the paragraphs above, the word truncated is employed to make explicit
one important limitation of DLST codes. To decode a DLST code diagonal by
diagonal, the output symbol sequence of a constituent code is decoded block
by block. It is desirable to have the number of symbols contained in a diagonal
large. To achieve this, one can employ diagonals that are multiple symbol in
width. This is illustrated in Fig. 5-3. With a diagonal width of W symbols, a
diagonal can contain nW symbols. If the expressions in (5-10) - (5-
12) and the design criteria above must be modified accordingly. An important
issue is that the use of wider diagonals does not necessary guarantee better
performance. One must optimize the constituent code for each value of W.

At high SNR, the pairwise error probability between c and e is approxi-
mately inversely proportional to The highest achievable
TMEL Usually this highest achievable
TMEL and it sometimes is desirable to employ a lower min-
imum TMEL to allow for higher throughput. The code design trade-off among
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the constellation size, diagonal width, data rate, and TMEL is as follows. Sup-
pose that the symbol constellation size is and the diagonal width is W. We
claim that, in slow fading environments, it is possible to find a constituent
code of data rate R bits/symbol so that the minimum TMEL is at least x:

where is the maximum size of a code length n and minimum
Hamming distance D defined over an alphabet of size 2bW , and D is defined
by

Proof. Denote the symbol constellation by Q. Consider an nW -symbol vector,
say whose components (symbols) are defined over Q.
Consider a mapping that into a length n vector

whose components are defined over
The rela-

tionship between one-to-one and onto. Let CB denote a set
(codebook) of length-n vectors defined over According to the input mes-
sage, the constituent coder chooses a vector from CB, and then applies
f –1 on   to obtain and hence the nW symbols to fill a diagonal of
width W.

If the minimum Hamming distance of CB is D, clearly the minimum
TMEL of the DLST code is at least

There-
fore, it is possible to find a constituent code with data rate

such that the minimum TMEL is at least

It is important to know the performance degradation incurred by LST
decoding when compared to ML decoding. Consider two DLST codeword
matrices C and E. Denote the first diagonals of C and E by c and e, respec-
tively. Further assume that and that this is the only difference between C
and E. For simplicity, we only consider W = 1. The average probability of
decoding C as E using ML decoding is given by (5-3), which is equivalent to
(5-2) in this special case. The corresponding probability for LST decoding is
given by (5-11). Hence:
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It is reasonable to estimate the power penalty by assuming that the (c, e)
diagonal pair yields the minimum TMEL. Suppose that the performance
requirement is that the average pairwise error probability must not exceed

By setting the RHS of both (5-16) and (5-17) to be the power
penalty can be estimated to be

For example, let us consider a DLST code that achieves the highest
achievable TMEL. If To achieve a max-
imum average pairwise error probability of 10-6, the estimated power penalty
is 3 dB. On the other hand, if In this case,
the power penalty is negligible.

5.5 Operational Aspects of LST Codes

5.5.1 Convolutional Codes as the Constituent Codes

The original DLST architecture does not lend itself to viable implementa-
tion using convolutional codes as the constituent codes. Under the DLST
architecture, to supply the symbol decisions necessary for interference cancel-
lation, the receiver must determine the values of the symbols of a DLST code-
word in a diagonal by diagonal fashion. A diagonal contains a block of nW
symbols, and this block is a section of the output symbol sequence of the cor-
responding constituent (1–D) Convolutional code. Diagonal-by-diagonal oper-
ation thus means that the output symbol sequence of the constituent code is
first partitioned into sections of nW symbols, and each section is decoded
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without any observations of the subsequent sections. Such a truncation results
in poor decoding performance. We can visualize this problem in Fig. 5-2. The
symbols and must be determined before observing symbols
etc. The reliability of the decision on symbol is particularly in doubt.

To solve this problem, we propose the single-stream structure, which is a
modification of the DLST architecture. Under the single-stream structure,
only one convolutional constituent code is used. The information bit sequence
is fed into the constituent code to generate a coded symbol sequence. The
space-time matrix codeword is obtained by filling the NW-SE diagonals of the
matrix codeword from left to right with these coded symbols, just as in the
original DLST architecture. The single-stream structure is shown in Fig. 5-4.

We will use the following terminology in discussing the decoding proce-
dure. Note that in order to perform decision feedback and interference cancel-
lation, it is only necessary to determine the values of the symbols, not the
encoded bits behind those symbols. We refer to a decision on the value of a
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symbol, which is to be used in decision feedback and interference cancella-
tion, as a tentative decision. The decision depth associated with a tentative
symbol decision is defined as the number of decision variables corresponding
to the symbol to be detected and the subsequent symbols that are incorporated
in arriving at the tentative decision. The problem with using convolutional
codes as the constituent codes in the original DLST architecture can be
rephrased by saying that there are always coded symbols whose tentative
decisions are made with excessively low decision depths, i.e., 1,2, ... sym-
bols.

The slightly modified encoding process in the single-stream structure per-
mits the receiver to perform the task of decision variable generation, tentative
decision, and interference cancellation in a symbol-by-symbol manner instead
of in a diagonal-by-diagonal manner. It is illustrated in Fig. 5-4. The receiver
starts by generating the decision variables for symbols and The
tentative decision on is first made with a decision depth of 4 (symbols), and
then the tentative decision on is made with a decision depth of  3. With the
tentative decision on available, the decision variable for      can be gener-
ated before determining the value of Now the tentative decision on can
be made with a decision depth of 3, and so on. The benefit is that the decision
depth can be at least W(n – 1) for every tentative decision. The name “single
stream” reflects the use of only one constituent code; by comparing Fig. 5-1
and Fig. 5-4, it is clear that such a symbol-by-symbol decision mechanism is
not possible with multiple constituent codes.

The average error probability of tentative decisions can be derived using
techniques similar to those employed in deriving (5-10). In the following, we
assume a diagonal width W = 1; the result can be easily extended to cases
where . Consider making a tentative decision on a symbol in the rth row.
Suppose that the transmitted symbol is and the subsequent (sequentially
down the diagonal) n – 2 transmitted symbols are . Note that
is placed in a slot on the row of the space-time codeword
matrix. Let another length-(n – 1) symbol sequence that can be transmitted in
place of The average prob-
ability that, based on the decision variables corresponding to symbols

the likelihood of e is higher than that of c, thus resulting in
tentatively deciding instead of is
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where . Equation (5-18) applies to both fast fading
and slow fading environments. At high SNR, equation (5-18) can be approxi-
mated as:

where . At low SNR, equation (5-
18) can be approximated as:

From (5-18) and (5-19), we propose the code design criteria for single-
stream DLST codes that minimizes the maximum average pairwise tentative
decision error probability. In the following, c and e are two symbol sequences
of length n – 1 symbols that can be generated from the same state of the
encoder of the constituent convolutional code. The design criterion is to
design the constituent convolutional code such that the following quantity is
maximized:

Error propagation is a common problem in all systems that employ deci-
sion feedback. In the LST architecture, errors can propagate both spatially and
temporally. Consider a symbol and an incorrect tentative decision on it.
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Because the incorrect decision is used in the interference cancellation process,
the decision variables of the symbols that are above this symbol on the same
column will contain error (errors propagate spatially upward). These incorrect
decision variables may further result in more erroneous tentative decisions
(errors propagate temporally).

After the tentative decisions are made, a sequence of decision variables is
generated. A decoding process is then applied over this decision variable
sequence to determine the encoded information bits, which we refer to as the
final decisions. The decoding processes for making tentative (symbol) deci-
sions and final (bit) decisions are conceptually separate. The final decisions
can be made without being subject to the limitation that the minimum deci-
sion depth cannot exceed W (n – 1). One might argue that by using a decision
depth longer than W (n – 1), the error probability of the final decisions can be
lower than that of the tentative decisions, especially when the minimum span
of an error event of the constituent code is longer than W (n – 1) symbols.
However, the exact error analysis of both the tentative and final decisions is
difficult due to the error propagation phenomenon.

We observe the impact of error propagation through Monte-Carlo simula-
tions. In the range of SNR of interest, the simulation result indicates that the
final decision error probability is always a significant fraction of the tentative
decision error probability. Thus our design criterion that optimizes the tenta-
tive decision error probability is justified.

Example 1.  In  this example, the number of antennas is n = m = 8.  The con-
stituent code for the n-D single stream LST code is to be a rate-1/2 feedfor-
ward convolutional code with a constraint length no greater than 10. Each pair
of output bits from the constituent encoder is mapped to a symbol point on the
QPSK constellation using the Gray code mapping. The throughput of the
single-stream DLST code is 8 bits per channel use.

For W  = 1, we perform an exhaustive search in the code space according
to our code design criterion in the high SNR regime. The maximum average
pairwise error probability of the optimal constituent code is

. This single-stream

DLST code is referred to as code A. The aforementioned convolutional code
is also used as the constituent code for an 8-D single stream LST code with a
diagonal width of 2 symbols (code B). The maximum average pairwise error
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probability of code B is approximately We did not search for

the optimum constituent code for code B due to time constraints.

We performed Monte-Carlo simulation to obtain the performance of both
code A and code B in slow fading environments. The following parameters
and terminology are used.

• For code A, the decision depths used for tentative decisions and final deci-
sions are 7 and 14, respectively.

• For code B, the decision depths used for both tentative decisions and final
decisions are 14. Because there are many error events whose spans are
less than 14 symbols, a decision depth of 14 for final decisions is suffi-
cient.

• An incorrect tentative decision that follows a long sequence of correct
tentative decisions is referred to as a leading error. As we have shown in
the paragraph above, a leading error can trigger numerous subsequent
errors. We record the error propagation statistics.

Fig. 5-5(a) shows the probability of occurrence of leading errors vs. SNR.
This is also the tentative decision error probability assuming perfect decision
feedback. Specifically, a large number of i.i.d. random channel realizations H
are generated. For each H, the average probability of leading error Pe|H is
obtained from simulation. The average leading error probability is the
average of Pe|H. We define outage as an event that the channel H cannot sup-
port an average error probability Pe|H lower than a required level. Thus, the
ten-percent outage leading error probability is the highest error proba-
bility such that 10% of the randomly generated channels have average error
probability Pe|H exceeding As expected, code B outperforms code A
in average leading error probability when is below 12 dB because of
its lower maximum average pairwise error probability. Code B also outper-
forms code A in the ten-percent outage leading error probability.

Fig. 5-5(b) shows the percentage of channels on which Pe|H is lower than
or . It shows that, for code A and code B, with SNRs of 11 dB and

10 dB, respectively, more than 90% of the random channel realizations sup-
port an average leading error probability Pe|H lower than

From simulation, we identify the channels conditioned on which the
average probability of leading error Pe|H is close to the ten-percent outage
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leading error probability Fig. 5-5(c) shows the median number of errors
that are triggered by a leading error on those channels. For code A, the
number of triggered final decision errors is lower than the number of triggered
tentative decisions errors. This can be attributed to the difference in the deci-
sion depths employed. We also observe error propagation events that last a
very long period of time, sometimes even hundreds of symbol decisions.

5.5.2 Block Codes as the Constituent Codes

It is natural to use block codes as the constituent codes of a DLST code.
To fill a NW-SE diagonal of a DLST codeword matrix, a block of information
bits is first encoded using a block code, yielding one (or several) block code-
word(s). The block codeword(s) is (are) subsequently mapped into a block of
Wn symbols. These Wn symbols are then used to fill a diagonal of the DLST
codeword matrix.

In the following we present an analysis of the error probability. We will
assume that the diagonal width W = 1 and that exactly one block codeword is

Team LRN



92 Chapter 5

contained in a diagonal; the result can be easily generalized to other cases. Let
a be a block codeword of n components, . Each com-
ponent of  a is individually mapped to a symbol, or a constellation point, under
a given mapping; that is, a is mapped into a vector
componentwise. These n symbols fill the slots of a diagonal.
Specifically, fills the row slot, where is a permutation of 0, 1, ...,

Here, is called the slot assignment. It is fixed and is known to both
the transmitter and the receiver. This encoding process is illustrated in Fig.
5-6. Assuming that there is no preceding decision feedback errors, the average
probability that the transmitted vector c is less likely than another vector e is
upper-bounded by:

in both slow and fast fading environments. Because the exponent m – k varies
with the row number k, the error probability can depend on the permutation

Given a slot assignment the TMEL, TMPD, and TMED between two
block codewords c and e are defined in Chapter 5.4(D). The design criteria in
Chapter 5.4(D) are applied to calculate the maximum average pairwise error
probability given a slot assignment we then choose the that yields
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the lowest maximum average pairwise error probability. In the following, we
briefly examine the performance of DLST codes with two classes of popular
block codes, the cyclic codes and the linear array codes, as the constituent
code.

Example 2. A popular class of block codes is the Reed-Solomon (RS) code.
In this example, a (7, 3) RS code is used as a constituent code of a 7-D DLST
code. The (7, 3) RS encoder maps three 8-ary input digits into seven 8-ary
output digits. Each 8-ary digit selects a point (symbol) on the 8-PSK constel-
lation according to the Gray code mapping, and these seven constellation
points are used to fill the slots of a diagonal of the 7-D DLST code.

The RS code is a linear maximal-distance separable (MDS) code. That is,
the minimum Hamming distance of an (N, K) RS code is

. We assert that if the block constituent code is a linear
MDS code, and if the coded digits of a block codeword are individually
mapped to constellation points, all permutations lead to the same minimum
TMEL of

Proof: Let us denote the inverse function of by . For any slot
assignment consider deleting the the and the

digits of every codeword of the RS codebook. The
resulting codebook has zero minimum Hamming distance. Due to
linearity, there are at least two all-zero codewords in this new codebook: one
is the result of puncturing the original all-zero codeword, and the other is the
result of puncturing a codeword c. When c is transmitted,

and fill the slots in the zeroth row to the
th row, respectively. We have now proved that due to the MDS

property, there is always at least one weight codeword c whose com-
ponents are nonzero, and the TMEL
between c and the all-zero codeword is
and is an upper bound of the minimum TMEL. On the other hand, because the
minimum Hamming distance is the minimum TMEL is obviously
lower-bounded by Therefore, the min-
imum TMEL is
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Monte-Carlo simulations are performed to obtain the performance of this
DLST code in slow fading environments with the number of receiving
antennas m = 7. Fig. 5-7(a) shows the average error probability assuming per-

fect decision feedback. Fig. 5-7(b) shows the median number of decision
errors measured in number of diagonals that are triggered by a leading error.

To achieve the performance indicated by equation (5-21), the receiver
needs to perform ML decoding over the decision variables corresponding to
the symbols contained in a diagonal. Efficient ML decoding algorithm for RS
codes is still unknown. Although the codebook of a (7, 3) RS code is small
enough that implementing a brute-force search for ML decoding is still fea-
sible, the need for ML decoding motivates us to study block codes for which
there exist efficient ML decoding algorithms.
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Example 3. One class of block codes that have compact and regular trellis
representations, which permit the use of efficient trellis-based ML decoding,
is the linear array codes (LAC) [41].

In this example we consider the following (8,4) LAC over GF(4). For the
encoding, four 4-ary information digits, and are arranged in a
two-by-two matrix:

For every row and column of this matrix, a parity check digit is generated:
and The four

information digits and four parity digits comprise a block codeword c. Gray
code mapping is used to map a 4-ary digit to a 4-PSK constellation point. In
contrast to the previous example, here the minimum TMEL of the constructed
DLST code depends on the slot assignment. With n = m = 8, the minimum
TMEL can be as high as 13 and as low as 6, depending on the slot assignment
used. One of the slot assignments that results in the highest minimum TMEL
is shown in Fig. 5-8(a).

Monte-Carlo simulations are performed to obtain the performance of this
DLST code in slow fading environments with m = 8 and the aforementioned
permutation. Fig. 5-8(b) shows the average error probability assuming perfect
decision feedback. Fig. 5-8(c) shows the median number of decision errors
that are triggered by a leading error.

5.6 Summary

Space-time codes, which embed redundancy in both the temporal and spa-
tial dimensions of the transmitted signal, are channel codes that can be used to
utilize the high channel capacity of dual antenna-array systems, particularly
for systems in which the transmitter does not have the instantaneous channel
state information. In this chapter, we considered space-time codes whose
throughput scale linearly in n, assuming that   Accompanying this high
throughput, however, is a potentially very high decoding complexity. With
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ML decoding, the receiver complexity is generally exponential in n, which
can be unmanageable even for moderate n.

We proposed LST codes which allow for low-complexity decoding. We
first analyzed the performance of LST codes, considering both slow and fast
fading environments as well as both high and low SNR situations. From the
analysis, we found that in slow fading environments DLST codes outperform
HLST codes. We defined the key design parameters – TMEL, TMPD, and
TMED – and formulated the design criteria for DLST codes.
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We examined the use of convolutional codes and block codes as the con-
stituent codes for DLST codes. With convolutional constituent codes, we
introduced the single-stream structure to greatly improve the reliability of ten-
tative decisions. With block constituent codes, we showed that the slot assign-
ment can result in dramatic differences in performance and thus must also be
optimized. We formulated the error analysis and design criteria for these mod-
ified DLST codes. We also provided example DLST codes and simulated their
performances.

Team LRN



98 Chapter  5

Appendix I: ML Decoding Error Analysis
In this appendix, we present an analysis of the error probability achieved

by ML decoding, using matrix codeword notation.

Let C and E be two distinct space-time codeword matrices. Suppose that
C is the transmitted space-time codeword. Given the channel realizations
the squared Euclidean distance between the noiseless receptions of C and E is

. The probability that the likelihood given
E is transmitted is Higher than that given C is transmitted, conditioned on the
channel realizations, is

where the Chernoff bound is applied to form the upper
bound. The average pairwise space-time codeword error probability is
obtained by averaging equation (5-22) over the distribution of

In a fast fading environment, we can define and an
vector Y by . Note that

Because Y is an mL-dimensional complex Gaussian vector, the eigenvalues of
the covariance matrix of Y completely determines the distribution of . The
covariance matrix of Y is thus simply a block diagonal matrix with the covari-
ance matrices of on the diagonal:

because for fast fading are mutually independent. Furthermore, because
the entries of are mutually independent, the covariance matrix of is a
diagonal matrix: . Therefore, is simply a
diagonal matrix, and its diagonal entries are its eigenvalues. Knowing these
eigenvalues, the expected value of the right-hand side of (5-22) can be taken
to upper-bound the average pairwise error probability by
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When analyzing the error performance in slow fading environments, it is
easier to consider the transpose of C,  where  is an m-
tuple. Because for all in slow fading, we can drop the time index
of H and use to denote the kth column of H. The vector Y can be written in
the following form:

where denotes the Kronecker product.

The eigenvalues of the covariance matrix of Y is

because . Let denote the nonzero eigenvalues of
the matrix Note that the number of
nonzero eigenvalues, rank(C – E), is upper-bounded by min(L, n). Due to the
property of matrix Kronecker product, is an eigenvalue of of
multiplicity m. The average pairwise error probability can be upper-bounded
by using (5-22),

When (5-24) and (5-27) are compared, we find that the upper bound for the
average pairwise space-time codeword error probability between C and E is
also the upper bound for the average pairwise codeword error probability
between two 1-D codewords f and g of length rank(C – E),
transmitted over a (1, m) system in a fast fading environment.
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Appendix II: Accurate computation of average pairwise
error probability

The Gaussian tail probability function Q(x) is ordinarily defined as

Craig in his work [44] showed that the Q-function can be defined (but only for
by

In addition to the advantage of having finite integration limits, the form in (5-
29) has the argument of the function x in the integrand rather than in the inte-
gration limits. This latter property can simplify the exact evaluation of proper-
ties of random variables in the form Q(x) wherein x is a random varialble of
some distribution. Many interesting cases have been solved by Simon and
Divsalar [45]. In this chapter, we apply the Chernoff bound,

, to approximate the Q-function in order to obtain the
error probability. Here, we focus on the exact evaluation of the average pair-
wise diagonal error probability for a DLST code.

The conditional pairwise diagonal error probability is specified in (5-10):

where are independently chi-squared distributed
with degrees of freedom. The average pairwise error probability is
thus
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Using (5-29), (5-31) can be reduced to a single integral with finite limits
as follows:

When the SNR is high, i.e. (5-32) can be
approximated by

Team LRN



102 Chapter 5

Note that in (5-33), the quantity is monotonically

decreasing with TMEL. When the SNR is low, (5-32) can be better approxi-
mated instead by

The same design criteria for DLST codes can be derived from (5-33) and (5-
34).
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6
Transmit Diversity

6.1 Introduction

In applications such as cellular mobile radio and fixed wireless local loop,
antenna arrays are deployed at the base station to combat fading, reject inter-
ference, and achieve higher antenna directionality. As the number of antenna
elements increases, the quality of the reverse link – the transmission from the
user equipment to the base station – can become superior to that of the for-
ward link, even though traditionally the forward link signal strength is much
higher than that of the reverse link. Improving the capacity of the forward link
has indeed become the priority in many applications.

Unfortunately, there are often constraints, such as size, cost, or battery
life, which limit the number of antenna elements that can be deployed at the
user equipment. To improve the quality of the forward link, forward transmit
diversity must be effectively utilized. However, whereas techniques to utilize
receive diversity are well documented, transmit diversity was not aggressively
explored until recently.

The reason that transmit diversity is less straightforward to employ than
receive diversity is that when the number of transmit antennas is greater than
the number of receiving antennas, the spatial dimension of the transmit signal
is greater than that of the received signal. Thus even when the channel matrix
is of full rank, linear operations at the receiver can no longer separate signals
transmitted by different antennas. In the past, to avoid making the signal
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detection task too difficult, it was common to reduce the spatial dimension of
the transmit signal through decimation. For example, in switched transmit
diversity, only one of the transmit antennas is permitted to transmit at any
given time. Other transmit diversity techniques include intentional time offset,
frequency offset, phase sweeping, frequency hopping and modulation diver-
sity. Decimation of the spatial degree of the transmitted signal usually results
in forfeiting some of the potential of transmit diversity.

In the previous chapters, we focused on systems that have more receive
antennas than transmit antennas. In this chapter, we will address the capacity
and efficient signal processing algorithms for the case when the number of
transmit antennas exceeds that of receiving antennas. In fact, many of the dual
antenna array concepts introduced in the previous chapters apply even when
m <  n. In this chapter, we will only concentrate on the aspects specific to the
cases where m <  n.

In this chapter, we first quickly review the channel capacity and the
optimal signal processing architecture with multiple transmit diversity from
an information-theoretic point-of-view. One particularly interesting result is
that when m = 1, with uniform power allocation, the capacity distribution of
an (n, 1) channel at SNR is identical to that of a (1, n) channel at SNR
However, effective decoding algorithms to process a transmitted signal with
uniform power allocation are still unknown. We will describe transmission
techniques that directly lead to an input-output formulation that is similar to
that of a (1, n) receive diversity system with maximal ratio combining. These
techniques are very attractive because they greatly simplify the receiver task,
inasmuch as they cannot always achieve channel capacity. An additional
advantage is that they do not require a complete redesign of existing systems
and thus they are well suited for upgrading their quality.

The remainder of this chapter is organized as follows. In chapter 6.2, we
review the channel capacity of dual antenna-array systems. In particular, we
will focus on m = 1. In chapter 6.3, we examine a simple method applicable
to any (n = 2, m) channel that indeed achieves the channel capacity with uni-
form power allocation. In chapter 6.4, we introduce the generalization of this
technique to n > 2. We give the summary in chapter 6.5.
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6.2 Channel capacity when the number of transmit antennas
exceeds the number of receive antennas

As we have mentioned in chapter 3.3, the channel capacity of an (n, m)
channel given the channel realization H subject to an average normalized
transmitter power constraint is

Denote the singular value decomposition of the channel matrix H be
When the transmitter has CSI, the input that achieves the

channel capacity is a zero-mean complex Gaussian vector with autocovari-
ance matrix The channel capacity is

where is a nonzero eigenvalue of and the nonnegative diagonal
matrix D is the one that maximizes the right-hand side of (6-2) subject to the
constraint that . The upper summation limit is m because m < n.

When uniform power allocation is employed, the maximum mutual infor-
mation is

The case when m = 1 is of particular interest to applications involving
compact user terminal equipment. When m = 1, the channel capacities given
CSI at the transmitter and the channel capacity with uniform power allocation
are and respec-
tively. It is interesting to see that with optimal power allocation the required
transmit power to achieve a certain channel capacity is 10logn dB lower than
that with uniform power allocation.

One of the most straightforward ways of utilizing transmit diversity is to
have the transmitting antennas sending their signals in turn. The average
channel capacity under this technique is
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where is the channel gain associated with the kth transmitting antenna ele-
ment. Due to the concave property of the logarithmic function, is always
greater than or equal to

A additional disadvantage of switched transmit diversity is that antennas need
to be turned on and off. This complicates the design of output amplifiers due
to the high peak-to-average requirement.

Another popular transmit diversity technique is select transmit diversity,
wherein the transmitter activates only the antenna element that has the highest
gain. The capacity with this scheme is

Clearly, is greater than  but lower than

Table 6-1 compares the four transmit diversity techniques described
above. Obviously, if complete CSI is available, the transmitter can use the
optimal scheme to achieve . If the phase information of the channel gain
is not available but the amplitude information is, select diversity is desirable.
Otherwise, the transmitter should seek to achieve

6.3 Transmit diversity equals two

In this section, we will describe a transmission diversity technique first
proposed by Alamouti [46]. This technique is can effectively achieve and
is applicable to any (n = 2, m) channel with no CSI available at the trans-
mitter, as long as the channel does not vary at a rate comparable to the baud
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rate. We will focus on the case where m = 1. Later we will show that generali-
zation to m > 1 is straightforward. The major benefit of this algorithm is that it
achieves with a very simple encoding/decoding process. Therefore, it is
well suited for the next generation cellular radio standard.

The encoding process is as follows. Immediately before time
two symbols and arrive at the transmitter. The transmitter sends

to transmit antenna 0 and to transmit antenna 1, respectively. At the next
time instance, i.e. no data arrives at the transmitter. The trans-
mitter sends and to transmit antenna 0 and transmit antenna 1,
respectively.

The input-output relationship of the channel at time and is

Equation (6-7) can be rearranged as
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Note that the columns of the matrix H are orthogonal to each other. To
detect the transmitted symbol, the receiver simply left-multiplies
by

This simple operation is akin to maximal-ratio combining. In (6-9), and
are i.i.d. After normalization, equation (6-9)

describes a SISO channel with channel power gain If  and
are independent is chi-squared distributed with four
degrees of freedom.

Under this transmit diversity scheme, given the channel gains and
the channel capacity is

This is exactly equal to  given by (6-3).

6.4 Transmit diversity greater than two

To extend the technique in chapter 6.3 to an (n > 2, m = 1)  system, one
solution is to apply orthogonal designs [47]. The theory of orthogonal design
is beyond the scope of this book. In the following, we will introduce this con-
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cept using a simple example. The work of Tarokh et. al [47] is recommended
to interested readers. First, we introduce the concept of orthogonal design.

Definition. A generalized orthogonal design G of size n and rate is
a matrix with entries 0, such that  where D
is a diagonal matrix with diagonal in the form

The coefficients are positive integers.

It is shown that, without loss of generality, one can consider only
generalized orthogonal designs G in variables that satisfy

An example of generalized complex orthogonal design with rate
is

Transmission Scheme. Consider a system with n transmitting antennas and 1
receiving antenna. The encoder first decides on an appropriate rate
such that a complex generalized orthogonal design of size n, i.e. a
matrix G using k independent symbol, exists. Immediately before
symbols arrive at the encoder. The transmitter forms the complex
generalized orthogonal design G using these k input symbols. During time

transmit antenna j transmits the  jth column entry
of G. The receiver, upon reception of signals performs a linear,
matched filtering-like processing to obtain interterence-free observations of
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We will illustrate this scheme using an example. Suppose that n = 3 and

that the complex generalized orthogonal design in (6-11) with p = 8 and

k = 4 is employed. Denote the channel (complex) gain from transmitting

antenna 1, 2, 3 to the receiving antenna by and The received signals,

respectively.

Define the following vectors:

It can be easily verified that

where

Note that the columns of H are orthogonal to each other. More specifically,
Because of this property, the receiver can

pre-multiply r by to obtain the individual interference-free observations
of the transmitted symbols. That is,
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where are i.i.d. Writing (6-14)
componentwise, we have

The signal-to-noise ratio of each symbol observation is

Equation (6-14) is identical to the describes a (1, n) system in which a
rate-(l /2) repetition code and maximal ratio combining is employed. In gen-
eral, when a generalized complex orthogonal design of rate R is employed, the
channel capacity with this technique is

The existence of a generalized complex orthogonal design is key to this
technique. It has been shown that complex generalized orthogonal design
exists whenever

6.5 Summary

In this chapter we presented theories and algorithms for channels in which
the number of transmitting antennas is higher than the number of receiving
antennas.

When the transmitter has the full CSI, it can employ optimal power allo-
cation. In this scenario, the transmitted vector is the linear combination of m
orthornormal vectors.
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When the transmitter knows only the amplitude gains from the transmit-
ting antenna elements to the single receiving antenna element, a good strategy
is to transmit only from the antenna with the highest amplitude gain.

If the transmitter is completely unaware of the channel conditions, uni-
form power allocation achieves a capacity that is identical to the capacity of a
(1, n) channel with a power penalty of We described an effec-
tive technique that achieves this capacity when n = 2. It is possible to extend
this technique to channels with n > 2 using generalized complex orthogonal
design. With this technique, the (n, 1) channel is transformed into an equiva-
lent (l ,  n) channel with a rate R repetition code and a power penalty of
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Open Issues

7.1 Introduction

In this book we have discussed a few facets of dual antenna-array sys-
tems. We have examined the distribution of channel capacity for a typical out-
door base station-subscriber unit link, the performance and applicability of
various power allocation strategies, and space-time codes and their design cri-
teria.

Nonetheless, there are still many open issues that must be resolved before
there is a complete dual antenna-array solution. In this chapter, we identify a
few key areas that warrant further research and development. What follows is
by no means a complete list.

7.2 Further Understanding of Channel Statistics

In this book, we have largely focused on quasi-static channels using a
model approach. “One-ring” and “two-ring” models are proposed to investi-
gate the spatial fading correlation, assuming that the channel stays constant
over a burst transmission period and that the bandwidth is narrow. The “one-
ring” model is appropriate in situations where one end of the wireless link is
elevated and unobstructed by local scatterers and the other end is surrounded
by local scatterers, while the “two-ring” model is appropriate in describing
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peer-to-peer systems in which local scatterers are present at both ends of the
link. We have assumed Rayleigh fading throughput; generalizing our method-
ology to both Rician and Nakagami fading is not difficult.

We have chosen the one- and two-ring models because they represent two
prototypical radio environments. When a more precise description of the
channel statistics in a particular environment is desired, one must employ a
channel model that is tailored for the specific environment [19]. Such a model
should, of course, be validated through experimental measurements.

In this book, we did not address the fading correlation for wideband, time-
varying channels. Specifically, denote the channel gain between transmitting
antenna and receiving antenna at frequency and time by

. A full description of channel fading correlation is to

specify This information
will be necessary in designing and evaluating the performance of space-time
channel codes in many practical applications.

7.3 Acquisition and Tracking of Channel State
Information

We have shown that in order to realize the potential of dual antenna-array
systems, the receiver must be able to measure and track the channel. Compu-
tationally efficient schemes for estimating and tracking a channel matrix that
has nm entries are desirable.

Transmitted reference techniques usually provide the simplest method for
CSI estimation. Common transmitted reference techniques are tone-calibra-
tion techniques and pilot symbol-assisted modulation. Both can be modified
to accommodate dual antenna arrays [36].

It can sometimes be desirable to directly track certain attributes of the
channel other than the channel matrix H. For example, as mentioned in
chapter 3, the optimal transmit basis can be used at the transmitter to trans-
form the MIMO channel into parallel SISO subchannels. To apply the optimal
transmit basis, the singular value decomposition of the channel matrix, i.e.,

must be known. As the channel changes, it is computation-
ally inefficient to track H and continually recompute the singular value
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decomposition, and a better solution is to track the matrices and

7.4 Signal Processing Techniques

Chapter 4 discussed the performance of dual antenna-array systems with
optimum, uniform, and stochastic water-filling power-allocation strategies in
both independent and correlated fading environments. Optimum power allo-
cation achieves the highest capacity and the lowest receiver complexity, but it
allocates unequal power, and hence assigns unequal throughput, to the sub-
channels. When using one of the other two power-allocation strategies, it is
often desirable to one-dimensionalize the MIMO channel into a set of parallel
SISO subchannels. This reduces the receiver complexity, and typically incurs
only a small capacity penalty. The communication rates over these parallel
SISO subchannels are unequal.

When there is a significant degree of inequality between subchannel
throughputs, for each subchannel it is necessary to employ a subchannel-spe-
cific modulation format and channel coding scheme. In particular, to apply
optimum power allocation over time-varying channels, the modulation for-
mats and channel coding schemes on the subchannels must be updated to
reflect the changes in channel conditions.

7.5 Network Issues

Consider a “benchmark” cellular system in which both the base stations
and the subscriber units have only one antenna element. By installing n-ele-
ment smart antennas at the base station sites while continuing to use only one
antenna element at each subscriber unit, the Erlang capacity, or user density
per cell, ofthis “smart antenna-enhanced” system can be increased by approx-
imately a factor of n, as a result of the interference suppression and beam-
forming capabilities of the antenna array.

In this book, the focus is on a single user-to-single user link with antenna
arrays at both ends. We have demonstrated that the channel capacity of an
(n, n) link is approximately n times higher than that of a (1, n) link assuming
independent fading. If all the base stations and subscriber units are all
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upgraded to use n-element antenna arrays, however, the supported user den-
sity does not exhibit an n-fold increase over the smart antenna-enhanced
system described in the previous paragraph.

To further understand this apparent paradox, consider the following time-
division multiple access scheme. There are n subscribers in a cell, and the
base station spends an equal amount of time serving each subscriber. Note that
no more than two subscribers can be served at the same time because the
available spatial degrees of freedom of an entire n-element antenna array must
be dedicated to one base station-to-subscriber unit link. It is easy to see that in
this scenario each subscriber receives a throughput slightly better than that in
the benchmark cellular system. So is there any significant advantage of
installing n-element antenna arrays at the subscriber units, other than the
antenna gain?

The answer lies in the fact that, with dual antenna arrays, the peak
throughput of any base station-subscriber unit link is approximately n times
higher than that in the “benchmark” system. This is a great advantage if the
traffic pattern over the network is bursty, which is often the case in packet
data networks. By activating a BS-SU link only when it is required, the
response time (delay) of the system can be reduced significantly. To take
advantage of this flexible throughput-allocation property, the air interface
must be designed with this in mind. In contrast, in a smart antenna-enhanced
system, even when there is only one subscriber present in a cell, the peak link
throughput cannot be made n times higher than that of a (1, 1) link.

7.6 Distributed BS Antenna Scheme

Throughout this book, we have implicitly assumed that the antenna ele-
ments belonging to an “antenna array” are located in relative proximity. In
chapter 3, the “one-ring” model is used to study the physical separation
required between the BS antenna elements to achieve low fading correlation.
As a rule of thumb, the larger the separation, the lower the fading correlation.
However, if most of the received energy comes through a dominant line-of-
sight path between the two antenna arrays, the channel capacity is dominated
by this line-of-sight path and does not exhibit a linear growth with respect to
the number of antenna elements at a reasonable SNR.
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What happens if the antenna elements are not placed in close proximity to
each other? Fig. 7-1 shows an interesting scenario in which a user communi-
cates with six antennas that are placed far apart from each other. In fact, one
may find similarity between the scenario shown in Fig. 7-1 with the so-called
“soft hand-off” scheme.

It has been shown [23] that in a scenario like Fig. 7-1, the correlation
between any two channel fades associated with different distributed BS
antenna elements is likely to be low, regardless of whether dominant line-of-
sight paths exist between the user antenna array and the distributed BS
antennas. Therefore, the probability is high that the channel supports
min(n, m) active spatial modes, with or without fading!

The challenge of operating such a system is obvious. Because the
received signal at different distributed sites must be jointly processed, the six
base stations must be precisely coordinated. This would require a high-band-
width communication channel between the controlling entity and the six base
stations.
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7.7 Space-Time Codes

In chapter 5, we presented a family of codes constructed based on the lay-
ered space-time architecture. This particular family of space-time codes can
be decoded with a complexity that is only quadratic with the number of
antenna elements.

Other high-throughput, low-complexity space-time codes are expected to
appear in the near future. One approach that can improve the performance of
DLST codes is to utilize an iterative decoding procedure. Iterative decoding
for channel codes has received tremendous attention in the communications
community recently. Iterative decoding often achieves performance close to
the optimal decoding technique, while providing the advantage of greatly
reduced complexity. Therefore, it is very attractive for decoding applications
of otherwise intractable complexity, such as turbo codes [42].

Some preliminary results [49] indicate that iterative decoding of DLST
codes indeed provides a performance improvement over the original hard
decision-feedback, diagonal-by-diagonal decoding architecture.
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