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Foreword

At present, the expansion of tetherless communications is atechnol ogical
trend surpassed perhaps only by the explosive growth of the Internet. Wireless
systems are being deployed today mainly for telephony, satisfying the indus-
trialized nations' appetite for talk-on-the-go, and providing much-needed
communications infrastructure in developing countries. The desire for wire-
less access to the Internet is starting to add fuel to the growth of tetherless
communications. Indeed, the synergy of wireless and Internet technologies
will lead to a host of exciting new applications, some of which are not yet
envisioned.

Future-generation wireless systems will achieve capacities much higher
than the systems of today by incorporating myriad improvements. These inno-
vations include transmission in higher-frequency bands, “smart antennas’,
multi-user detection, new forward error-correction techniques, and advanced
network resource-alocation techniques.

The term “smart antenna” usually refers to the deployment of multiple
antennas a the base-station site, coupled with specia processing of the mul-
tiple received signas. Smart antennas can adaptively reject co-channel inter-
ference and mitigate multipath fading, and have been identified by many as a
promising means to extend base-station coverage, increase system capacity
and enhance quality of service.

Currently, smart antennas are added to existing systems in away that is
transparent to the rest of the network from an operationa perspective. This
approach is cost-effective and backward-compatible. Over the next few years,
much of the new wireless infrastructure will employ smart antennas, and to
fully utilize their potential, the air-interface standards must be designed with
smart antennas in mind. For example, proposed third-generation cellular radio
standards include built-in support for smart antennas.

Looking further ahead, once smart antennas are widely deployed and their
benefits have been exploited fully, what should we do next? In this book, Da-
shan Shiu helps answer this question by exploring the use of antenna arrays at
both ends of the wireless link. Dual-antenna array systems offer unprece-
dented spectral efficiencies over wireless channels in which a line-of-sight
path is not present. Since the announcement by Lucent Technologies of their
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Xii

BLAST (Bell-labs LAyered Space-Time) prototype, dual-antenna array sys-
tems have garnered considerable attention from both industrial and academic
researchers.

Dual-antenna arrays will become a key technology for future wireless
systems, providing enormous capacity increases that will enable high-speed
mobile Internet access, enhanced-capacity wireless local loops, wireless high-
definition video transport, and other exciting applications. Unlike telephony
applications, which require a constant bit rate per user, many of these new
applications generate bursty, asynchronous traffic, which is well-matched to
the high average throughput and very high peak throughput provided by dual-
antenna arrays.

The theory of dual-antenna array systems is not a straightforward exten-
sion of the existing theory of single antenna-to-multiple antenna communica-
tions, and a single volume cannot hope to provide encyclopedic coverage of
dual-antenna array theory. This book treats several key topics in depth,
including signal propagation, transmit power allocation, information-theoretic
channel capacity, and coding and decoding techniques. Da-shan Shiu dis-
cusses the “what-is’, “what-to-expect” and “how-to” of dual-antenna array
systems. An important unifying theme is how to exploit, rather than mitigate,
multipath fading effects. While this might seem counterintuitive a first,
Chapter 3 should persuade even the skeptical reader of the beneficial effects
of multipath fading.

| recommend this book highly.

Joseph M. Kahn
Berkeley, Cdifornia
August 10, 1999
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Preface

Dua antenna-array systems offer a significantly larger channel capacity
than single-antenna systems. As arule of thumb, if the fades between pairs of
transmit-receive antennas are i.i.d., the average channel capacity of a dual
antenna-array system that uses n antennas a both the transmitter and the
receiver is approximately n times higher than that of a single-antenna system.
Furthermore, this increased spectral efficiency cannot be obtained by any
other known methods. This book investigates a few fundamental issues with
wireless communications using dual antenna arrays.

The materia in this book is primarily intended for engineers, scientists,
and so forth who want to start learning about this exciting new paradigm. We
assume a basic knowledge of signal processing, linear system theory, digital
communications, and information theory.

A GUIDED TOUR OF THE BOOK

Mathematical Prdiminaries

Chapter 2 establishes a generic mathematical representation for a multi-
ple-input, multiple-output (MIMO) frequency-nonselective Rayleigh fading
channel. The expression for channel capacity assuming that the receiver has a
perfect measurement of the channel is presented.

We dso provide the asymptotic property of channel capacity assuming
that the channel fades are independent. It is clear that the channel capacity
scaes linearly with the number of antenna elements.

Fading Correation Modd

A fading channel is considered as a random variable. Its distribution not
only determines the distribution of channel capacity but also the overal signal
processing architecture. In Chapter 3 we present an abstract model for the
multipath propagation environment of a typical outdoor fixed wireless link
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Preface Xiv

and derive the corresponding channel distribution, or fading correlation. This
model is a reasonable approximation of the real propagation environment and
is simple enough to lead to useful insights, such as the relationship between
effective degrees of freedom and fading correlation, about MIMO fading
channels. We then discuss the dependence of channel capacity on model
parameters such as angle spread, antenna element spacing, and angle of
arrival.

The MIMO channel can be decomposed into a set of equivalent single-
input, single-output subchannels. The effect of severe fading correlation is to
reduce the number of subchannels that are active in conveying information.

Power Allocation Strategies

A power alocation strategy determines the alocation of physical transmit
power, and hence the communication rate, to each spatia dimension of the
transmitted signal. Choosing an appropriate power allocation strategy is par-
ticularly important when the SNR is low.

In Chapter 4, we discuss three power alocation strategies for dual
antenna-array Systems, assuming that the channel can be described by the
model in Chapter 3. Optimum power alocation achieves the highest capacity
but requires the transmitter to have instantaneous channel state information
(CSl). When the transmitter does not have CSI, uniform power alocation can
be employed. It performs well when the fading correlation is low. When the
fading correlaion is high, stochastic water-filling power alocation performs
very close to optimum power alocation in the downlink, and uniform power
alocation achieves the highest average capacity in the uplink.

Layered Space-Time Codes

Space-time codes are channel codes with multiple spatial dimensions that
can be used to utilize the high channel capacity of dua antenna-array systems.
In particular, such codes are necessary in systems in which the transmitter
does not have the instantaneous CSl. Unfortunately, the decoding complexity
of space-time codes can be very high. We propose layered space-time (LST)
codes which alow for low-complexity decoding. We analyze the performance
of LST codes and define the key design parameters to formulate the design
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Preface XV

criteria for LST codes. Furthermore, we examine the use of convolutional
codes and block codes as the constituent codes for DLST codes, and propose
modifications to the LST architecture to greatly improve the performance of
LST codes.

Tranamit Diversty

In many applications, antenna arrays are deployed only a the base sta-
tions due to some physical and cost considerations. In Chapter 6 we discuss
techniques that can be applied to improve the quality of transmission from an
antenna array to a single antenna. We provide a channel capacity analysis to
evaluate the performance of these transmit diversity schemes.

Open Issues

The final chapter is a persona statement about the future research direc-
tions on dua antenna-array systems. We identify afew key areas that warrant
further research and development: further understanding of channel statistics,
acquisition and tracking of CSl, signal processing techniques, network issues,
distributed BS antenna scheme, and high performance space-time codes.
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1

| ntroduction

1.1 Dual Antenna Array Systems

The demand for higher datarates and higher quality in wireless communi-
cation systems has recently seen unprecedented growth. One of the most lim-
iting factors in wireless communications is the scarcity of spectrum.
Techniques that improve spectral efficiency, such asthe cellular structure that
allows frequency reuse, have had tremendous impact on the proliferation of
wireless communications. In this book, we explore anew technology that can
dramatically increase the spectral efficiency. One key element of this tech-
nology isto use antenna arrays at both the transmitter and receiver.

Antenna arrays have been used to combat various types of channel
impairments. An antenna array with sufficient antenna spacing can provide
spatial diversity to mitigate multipath fading. Beamforming and diversity
reception can be employed to combat the effect of delay spread and co-
channel interference. For acomprehensive summary, see [1]. The advancesin
technology and the expanding demands for antenna arrays have made them
very economical, and the trend of using GHz carriers for wireless access net-
works reduce the size requirements of the antenna arrays.

One implicit assumption underlying these traditional uses of antenna
arrays is that the information content transmitted or received by each antenna
element is identical. This is intuitive because if unrelated signals are trans-
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2 Chapter 1

mitted from different antenna elements, these signal will interfere with each
other at the receiver. As an example, consider beamforming. By properly
adjusting the phase of each antenna, the main lobe of the antenna pattern can
be directed to the desired angle. This enhances the strength of the desired
signal and also suppresses the interference from signals coming from undes-
ired angles. However, we will show in this book that the key to fulfilling the
potential of dual antenna array systems is to transmit independent information
from each antenna element.

It is aso believed that maintaining a direct line-of-sight path between the
transmitter and the receiver is desirable because it minimizes the scattering
and absorption of the signal. In this book we will aso show that in certain sit-
uations the multipath fading introduced by the scatterers can indeed lead to a
channel capacity much higher than if the channel is line-of-sight.

1.2 Systems Having Multiple Antennas at Both the
Transmitter and the Receiver

Recently, aradically different paradigm for the use of antenna arrays has
been proposed. It has been shown that wireless systems using multiple
antennas at both the transmitter and the receiver offer a large capacity. As a
rule of thumb, if the fades between pairs of transmit-receive antennas are
i.i.d., the average channel capacity of adual antenna-array system that uses n
antennas a both the transmitter and the receiver is approximately n times
higher than that of a single-antenna system for a fixed bandwidth and overall
transmitted power [2] - [4]. Furthermore, this increased spectral efficiency
cannot be obtained by any other known methods.

The following are the requirements for such a high channel capacity.

» Antenna arrays with sufficient spacings must be deployed at both
ends.

* The link must employ no conventional mechanism, such as fre-
guency- or code- division multiplexing, to ensure that the signals
transmitted by different transmitting antennas are orthogona to
each other at the receiver.
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Introduction 3

» The propagation environment between the transmitter and the
receiver must provide numerous propagation paths.

* The receiver must be able to measure or estimate the channel gain,
both amplitude gain and phase shift. To our knowledge, to date the
proposed detection techniques require the receiver to apply coher-
ent processing techniques over the received signds.

There are a large number of potentia applications for such dua antenna
array systems [5]. However, because of the need for a good channel estima-
tion and the required size or form factor of the antenna arrays, in our opinion
applications using the first generation of implementations will be restricted to
low-mobility, medium-sized client terminals.

This finding of the new paradigm has spurred a great interest in the com-
munications research community. Initial results on channel measurement,
channel capacity, channel modeling and simulation, space-time signa pro-
cessing techniques and space-time channel codes, equalization, and proto-
typing have been reported. We expect to see much more research and
development activities on dual antenna-array Systems with space-time pro-
cessing in the near future, because this is truly an innovation with a tremen-
dous impact on wireless communications.

1.3 Overview

The next chapter presents the fundamentals of wireless communications
in fading environments. We describe a generic mathematical representation
for a multiple-input, multiple-output (MIMO) frequency-nonselective Ray-
leigh fading channel. We then present formulas for calculating channel
capacity subject to constraints on the second-order statistics of the input
signal assuming that the recelver has a perfect measurement of the channel.
To serve as amotivating point, we provide a proof of the almost-sure conver-
gence of per-antenna capacity, which is equivalent to saying that the expected
value of channel capacity grows linearly in the number of antenna, under an
Idealized assumption on the spatial fading correlation. We will aso present a
result which demonstrates the importance of having the channel measurement
a the recelver. If the channel measurement is unavailable to the receiver, the
linear growth of channel capacity with respect to the number of antenna ele-

Team LRN



4 Chapter 1

ments ceases after the number of antenna elements reach the coherence time
of the channel.

The design of dual antenna-array systems and the analysis of their perfor-
mance require a new class of channel models that pay more attention to the
spatia characteristics. In Chapter 3, we will present a scatterer model which is
appropriate in the context where one end of the wireless link is elevated and
unobstructed while the other end is surrounded by loca scetterers. From this
model, we show how the spatial fading correlation can be reasonably esti-
mated given key physical parameters such as angle spread and angle of
arrival. In explaining the effect of spatial fading correlation on the channel
capacity of dual antenna-array systems, we decompose the MIMO channel
into an equivalent system conssting of a st of parallel single-input, single-
output (SISO) channels and show that the fading correlation modifies the gain
distributions of these SISO channels.

Chapter 4 discusses the performance of dual antenna-array systems with
different power alocation strategies. The term “power alocation strategy”
refers to how the transmitted power is distributed among the n spatialy
orthogonal transmit modes. Although the capacity using optimum power allo-
cation is the highest, instantaneous channel state information (CSl) a the
transmitter is required to implement optimum power alocation. Uniform
power allocation, on the other hand, is robust and amenable to implementa-
tion. Using the model developed in Chapter 3, we evaluate the performance of
these two power dlocation strategies. When the fading correlation is high,
there is a significant difference between the capacities achievable by the two
power alocation strategies. A novel power alocation strategy, which we refer
to as stochastic water-filling, is proposed. We show that in the downlink direc-
tion the power allocation computed using the stochastic water-filling algo-
rithm yields a capacity significantly higher than uniform power allocation.

Though the high spectral efficiency promised by dual antenna array sys-
tems is very exciting, ML detection at the receiver generally requires a com-
plexity that increases exponentially in n. In Chapter 5 we consider a class of
channel codes, the layered space-time (LST) codes, whose encoding/decoding
complexity increases much lessrapidly in n. We first review the LST architec-
ture. Subsequently, we analyze the error performance of LST codes. Based on
this analysis, we identify the key parameters of LST codes, and use them to
formulate a st of design criteria for LST codes. Next, we present the optimal
trade-off among design parameters, and the power penalty associated with
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I ntroduction 5

suboptimal LST decoding compared to ML decoding. Operational details of
employing block and convolutional codes as the constituent codes are exam-
ined. We propose modifications to the original LST architecture to greatly
enhance the performance of LST codes.

In many existing applications, eg. cellular radio networks, multiple
antenna elements can only be deployed at one end; asingle antenna element is
used at the other end. While techniques to utilize the receive diversity pro-
vided by the antenna array is well documented, effective ways to utilize the
transmit diverdity, in particular in non-line-of-sight environments, have not
been studied until recently. In Chapter 6 we first examine the potential of
transmit diversity when there is only one receiving antenna element. We then
describe methods that achieve the full or partial benefit of transmit diversity
in situations where the transmitter has no channel state information at all.

Chapter 7 summarizes the conclusions of this book and present topics for
future research.
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2

Background

In this chapter, we discuss the fundamental aspects of wireless communi-
cations using multiple antennas at both ends of alink in fading environments.
We describe a mathematical representation for a multiple-input, multiple-
output (MIMO) frequency-nonselective Rayleigh fading channel. We then
examine the definition of channel capacity on such channels assuming that the
channel is quasi-static, and provide a proof of the almost sure convergence of
channel capacity per antenna. It will become clear that multipath fading is the
key to such a high channel capacity. While having the channel state informa-
tion (CSl) at the receiver is critical, having CSl a the transmitter is not. Fur-
thermore, orthogonalization of signals that carry independent data streams in
time, frequency, or code is unnecessary if the number of data streams is less
than the number of antenna elements.

Before we proceed, note that the following notation is used throughout
this book.

* We focus on single-user to single-user communication using
antenna arrays at both ends. We usen and m to denote the number
of antennas a the transmitter and the receiver, respectively, and
refer to an n-transmit, m-receive antenna system as an (n, m) sys-
tem.

» Bold-face lower-case letters, eg. x, refers to column vectors.
Upper-case letters, eg. X, refer to matrices.
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8 Chapter 2

o For a matrix X, its Ith column is denoted by x; That is,
X = [xo X, ] . The kth row, Ith column element is denoted by
xf or X(k, 1) .

« Weuse * for complex conjugate transpose, ' for transpose, and
1 for conjugate transpose.

* A red Gaussian random variable with mean £ and variance o?is

denoted as N(&, 62). A circularly symmetric complex Gaussian
random variable z, denoted by z ~ N(0, 62), is a random variable
z = x+iy inwhichxand y arei.i.d. N(0,c2/2).

2.1 Channel and Noise M odel

In this book, we assume that the communication is carried out using
bursts (packets), and that the channel varies at a rate sow enough that it can
be regarded as essentially fixed during a burst. Under this assumption, the
multiple-input, multiple-output (MIMO) channel can be regarded as linear
time-invariant during a burst transmission. Denote the signal transmitted by
the Ith transmit antennaby s’(r) and the signal received by the kth receive
antennaby r*(r). Also denote the impulse response connecting the input of
the channel from transmit antenna | to the output of the channel to receive
antennak by h{‘(t) . The input/output relation of the MEA system is described
by the following vector notation:

r(t) = H@®)*s(t) +v(1), (2-1)

where  r(t) = (rl() r2(r) ... (1)), s(?) = (s1(1) s2(@1) ... s™(1)),
HK(1) = h}(r), v(r) is additive white Gaussian noise (AWGN), and * denotes
convolution.

If the communication bandwidth is narrow enough that the channel fre-
quency response can be treated as flat across frequency, the gain connecting
transmitting antenna | and receiving antenna k can be denoted by a complex
number h{‘. The discrete-time system corresponding to (2-1) is:

ro.=Hs +v, (2-2)
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Background 9

Where ; |s the discrete-time index, s, = (s! s2 ..s"y, r, = (r} r2 11y,
V.= (v v ..vI"y', and the channel matrixis H(k, 1) = hf.

In this book, we consider Rayleigh fading channels. For Rayleigh fading
channels, the channel gain h" is modeled as N(0, 1) [6]. The m noise com-
ponents of v are assumed to bei.i.d. N(O, 02) The average signal-to-noise
ratio (SNR) is defined as E[s_Ts ]/02 To facilitate a fair comparison
between systems having different number of antennas, the average SNR,
tr(E[sTTsr])/cf, where tr denotes trace, is limited to be no greater than p,
regardless of n.

In most of this book, we focus on slowly varying, flat Rayleigh fading
channels because even with this simple and manageable channel model most
important insights into dual antenna-array systems can be obtained. This
assumption is relaxed in Chapter 5, where we consider the performance of
space-time codes over fast-fading channels. The results obtained here for
slowly varying, flat Rayleigh channels can be extended to other classes of
channels, using established techniques. For example, awideband channel with
frequency selective fading can be transformed into parallel narrowband chan-
nels through the use of orthogona frequency division multiplexing (OFDM)
[7], and the theories described in this book can be applied to each of the nar-
rowband channel.

2.2 Channel Capacity

In the introduction, we mentioned the assumption that communication is
carried out using bursts (packets). The burst duration is assumed to be short
enough that the channel can be regarded as essentially fixed during a burst, but
long enough that the standard information-theoretic assumption of infinitely
long code block lengths is auseful idealization. These assumptions are met in,
for instance, fixed wireless and indoor wireless applications. In short, for each
burst transmission, the channel is randomly drawn from an underlying distri-
bution and stays fixed for the duration of the entire burst. In this quasi-static
scenario, it is meaningful to associate a channel capacity with a given realiza-
tion of channel matrix H. Because the channel capacity is a function of the
channel realization, the channel capacity is arandom quantity whose distribu-
tion is determined by the distribution of H.
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10 Chapter 2

Assuming that receiver has perfect CSl, the channel capacity of acommu-
nication system described by (2-2) given the channel realization H subject to
the constraint that E[s.s.T] = Z_ is ([2], [8])

C= logz[det (1 + GLZHZ SHTH (bits per channel use), 2-3)

14

achieved by zero-mean circularly symmetric complex Gaussian input
N(0,Z,). A more relaxed condition is that only the average overdl trans-
mitted power, ¢r(Z;), is constrained. Subject to this constraint, the channel

capacity is

- 1 ) - ;

C= tr(E?)lanpo' ) logz[det (l + GEH}: HY } (bits per channel use), (2-4)
achieved by zero-mean circularly symmetric complex Gaussian input whose
covariance matrix is the argument that maximizes (2-4).

In this book, we will present channel capacities subject to various con-
straints' on the second order statistics of the input. Usually the underlying
constraint will be obvious from the context. Whenever there is potential for
confusion, we will explicitly indicate the particular constraint.

In later chapters we will compare channel capacities subject to different
congtraints. To compare one channel capacity distribution from another, note
that in dow fading environments an important performance measure for an
dual antenna-array system is the capacity a a given outage probability g,
denoted by C,. To be specific, the capacity is lessthan C,with probability q.
In this book, comparisons among different capacity distri%uti ons will be pre-
sented, when possible, based on the capacity at ten-percent outage, Cg ;- How-

! For ascalar AWGN channel, when the term channel capacity is used, it usu-
aly refers to the maximal mutual information subject to a maximal variance
constraint on the input. However, for multi-dimensional inputs, consensus on
what is theimplied constraint has not been reached. Therefore, we feel that it

is appropriate not to reserve the term channel capacity for acertain constraint.
Instead, channel capacity is used as a synonym for maximal mutual informa-
tion.
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ever, when it is not practical to compute C,, we will use the expected value of
capacity for comparison purposes.

2.3 Asymptotic Behavior of Channel Capacity

We have mentioned in Chapter 1 that the capacity of an (n, m) wireless
link assuming idedlized i.i.d. flat Rayleigh fading is approximately propor-
tional to min(n, m). This large capacity is a major motivation for the research
described in this book. In the following, we provide a succinct outline of the
theoretical derivation of this result. For more details, the reader is referred to

[9].

Specifically, we consider an (n, n) i.i.d. flat Rayleigh fading channel. We
focus on the ratio between the expected value of channel capacity, E[C], to
the number of antennas, n, subject to a constraint on the second-order Statis-
tics of the transmitted signal s., Zs/ov2 = p/n-1,. Given such aconstraint,
channel capacity is achieved by a zero-mean circularly symmetric complex
Gaussian input distribution N(0, ps2/n - 1,). The channel capacity is

C= log2|:det (1 + EHHT)J = ZZ - llog2(1 + Ee%) , (2-5)

where e are the eigenvalues of HHT . It has been shown that, as n — o the
distribution of the eigenvalues of HHT/n converges to the following deter-
ministic function almost surely, where A denotes the eigenvalue of HHT/n
by [10]:

11
= [=- 0<i<4,
gA) = 3nNA 4 (2-6)
0 otherwise.
Therefore, dmost surely,
c 4
P flog,(1 + pA)g(M)dh = Ci* 2-7)
0
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i.e, C/n converges to aconstantC, .* determinecby the SNR p.

Note that this convergence result does not require the transmitter to have
channel state information because in this case the covariance matrix of the
input signal is channel independent.

2.4 Channd capacity when the receiver does not have
CSl

Here we examine the channel capacity when neither the transmitter nor
the receiver knows the CSl. It says that, if the receiver does not have CSl,
increasing the number of transmit antennas beyond the channel coherence
time does not improve channel capacity assuming that the channel fades are
I.i.d. Rayleigh. The result is due to Marzettaand Hochwald [11].

The channel is assumed to remain constant for T symbol periodst =1, 2,
..., I, after which they change to new independent random values which they
maintain for another T symbol periods, and so on. Tis referred to as the coher-
ence time of the channel. In the following, we assume that m is always larger
than n.

Define S = [sl Sy - sT]', R = [rl ry .. rT]', and
V= ["l Vy e vﬂ'-Theﬂ
R =HS+V. (2-8)
Because the receiver does not have CSl, the receiver can no longer calculate
the likelihood of Sgiven H. Instead, it must formulate the unconditional likeli-
hood of the transmitted signal, which is the conditional probability density of
Rgiven S If theentriesof H are i.i.d. N(0, 1),

exp(~tr{[I;+ (p/n)SSTI"'RR1})
nT™det™[ I+ (p/n)SST]

p(R|S) = (2-9)

where I denotes the T x T identity matrix and “tr” denotes trace. Note that
the likelihood of a transmitted signal S depends only on SST. Equation (2-9)
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suggests that it is the probability distribution of SST which isimportant, not
the distribution of Sitself.

Consider a particular codebook ¢B,. The codebook |eads to a probability
mass function of $St. Now construct another codebook ¢B,. For each code-
word S belonging to B, we put a corresponding codeword L, which is a
T x T lower triangular matrix, in ¢B,. These two matrices Sand L are related
by the Cholesky factorization, SST = LL'. Because ¢B,containonly Tx T
lower triangular matrices, an antenna array of T elements is enough to
transmit the codewords of ¢B,. Furthermore, it is shown in [11] that ¢B;and
CB, generate the same mutual information and conform to the same transmit
power constraint:

17 2 _
izt= IZZ= 1E|sfl =P (2-10)

The conclusion is that increasing the number of transmit antenna does not
increase capacity. It is in sharp contrast with the case when the receiver has
CSl.

2.5 Discussion

Here we examine the requirements listed in Chapter 1 for the high
channel capacity offered by employing dual antenna arrays.

1 Multiple antennas must be deployed at both ends. To be more specific, if
n = o(m) (or m = o(n)), i.e. the number of antenna elements & one
end of alink isinsignificant compared to that at the other end, the chan-
nel capacity can not grow linearly with m (or n). The proof, assuming
that the entries of H arei.i.d., is shown in the Appendix.

2. The propagation environment between the transmitter and the receiver
exhibits rich multipath.
It has been shown in [7] that if the channel consists of only L multipath
component from the transmitting antenna array to the receiving antenna
array, and that if the distance between the antenna arrays and the scatter-
ers ae sufficiently larger than the physical dimension of the antenna
arrays, once min(m, n) is grester than L, the capacity stops increasing
linearly with the number of antennas for a reasonable SNR. In this book,
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we aways assume that the propagation environment provides rich
enough multipath so that the number of multipath components is not a
concern.

The following two requirements are evident from the formulation of
channel capacity in (2-3).

3. The link must employ no conventional mechanism, such as frequency-
or code- division multiplexing, to ensure that the signals transmitted by
different transmitting antennas are orthogonal to each other a the
receiver.

4. The receiver must measure the channel gain (both amplitude gain and
phase shift). The techniques introduced in this book are al based on an
implicit assumption that the receiver can apply coherent processing
techniques over the received signals.

2.6 Summary

In this chapter, we outlined the scope of study for the next few chapters.
Specifically, we provided a general framework for dual antenna-array systems
operating on frequency-nonselective, burst-stationary Rayleigh fading chan-
nels. We provided the definition of channel capacity, assuming that the CSl a
the receiver is perfect. The expressions for channel capacity subject to various
constraints on the second-order statistics of the input are presented.

We showed that when the input covariance matrix is constrained to be a
diagonal matrix with identical diagona entries, the channel capacity of an
(n, n) channel per antenna converges amost surely to a constant determined
by average SNR. We aso showed that if the receiver does not have CSl,
increasing the number of transmit antenna elements over the channel coher-
ence time does not improve channel capacity. Finally we commented on the
requirements that must be met in order to utilize this high capacity.
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Appendix

If m and n tend to infinity in such a way that n/ m tends to a limit y
€[0, 11, then the largest eigenvalue of HH'/m, denoted by Amaxs CONVErges
to A,,,, = (1 + +/y)? dmost surely [12]. Therefore, if n/m — 0 asymptoti-
cally, i.e. the increase of the number of antenna elements at the transmitting
end of alink is insignificant compared to that a the receiving end, from (2-5),
the channel capacity per receiving antenna converges to

tim € < fim Liog,/det (1+ EHHT)}
n

m—oomn m-»o M

o 45 1)
lim mzk= 1log2 1+nek

m—» ©

<

.oon m N p.2
< lim <=lo (l + —) + lim -— lo (1 + e )
m-—owm &2 n Zk= 1 082 m K

m->oo M

(2-11)

<0+ lim Zlog,(1 + o)
m’_',“wm"gZ( PAas)

= 0.
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3

SPATIAL FADING
CORRELATION AND ITS
EFFECTS ON

CHANNEL CAPACITY

3.1 Introduction

In Chapter 2 it is shown that, if the fades between pairs of transmit-receive
antenna elements are independent and identically Rayleigh, for a given trans-
mitter power, the channel capacity per antenna of an (n, m) channel as
min(n, m) grows toward infinity converges to a nonzero constant determined
by the average SNR almost surely.

The aforementioned assumption of i.i.d. fading has been made in many
previous works that explore the channel capacity of dual antenna-array sys-
tems; eg. [3], [13], [14]. However, in red propagation environments, the
fades are not independent due, for example, to insufficient spacing between
antenna elements. Different channel correlation profiles lead to different
channel capacity distribution. It has been observed [9] that when the fades are
correlated the channel capacity can be significantly smaller than when the
fades are i.i.d. The god of this chapter is to investigate through analytical
methods the effects of fading correlations on dual antenna-array systems. To
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18 Chapter 3

do this, we first need to quantify the spatid fading correlation for the partic-
ular class of fading channels of interest.

There have been many works that study the characteristics of spatial
fading correlation, mainly motivated by the need to quantify the effect of spa-
tial fading correlation on the performance of diversity reception systems
(n=1, m>1). One approach is to record a large number of typical channel
realizations through field measurements or through ray-tracing simulations,
eg. [9], [15] - [18]. Another approach is to construct a scatterer model that
can provide a reasonable description of the scattering environments for the
wireless application of interest. The advantage of using abstract models is that
with a simple and intuitive model the essential characteristics of the channel
can be clearly illuminated, and the insights obtained from the model can then
be utilized in planning the detailed measurements and/or simulations. For an
overview of the numerous scattering models, see [19]. Examples of the
abstract model approach include [7], [15], [20] - [22]. It must be noted, how-
ever, that abstract models need to be vaidated. To our knowledge, the mod-
eling of fading correlation and its effect on capacity when both the transmitter
and receiver employ multiple antenna elements have not been addressed by
previous works.

In this chapter, to model multipath propagation and fading correlation, we
extend the “one-ring” model first employed by Jakes [20]. This model is
appropriate in the context where the one end of the wireless link is elevated
and seldom obstructed. 1t must therefore be noted that the results obtained in
this chapter are not necessarily applicable to other classes of fading channels.
From the “one-ring” model, the spatial fading correlation of a narrowband flat
fading channel can be determined from the physical parameters of the model,
which include antenna spacing, antenna arrangement, angle spread, and angle
of arrival. In this chapter we will only apply the channel capacity distribution
given the spatial fading correlation. The spatial fading correlation can aso be
applied in research areas related to other applications of multiple antenna sys-
tems [24].

1. Driessen and Foschini [23] studied the deterministic channel when only
line-of-sight channel components exist between the transmitting antennaee-
ments or their images and the receiving antenna elements.
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Spatia Fading Correlation and Its Effects on Channel Capacity 19

As mentioned above, in order to quantify the effect of fading correlation,
we focus on the information-theoretic channel capacity. To interpret the effect
of spatia fading correlation, we will first show that an (n, m) MIMO channel
can be decomposed into min(n, m) subchannels, or (spatial) eigenmodes. The
channel capacity of an (n, m) MIMO channel isthe sum of the capacities of its
individual subchannels. In Chapter 3.3 we show that spatial fading correlation
determines the distributions of the subchannel capacities and thus the distribu-
tion of the overall channel capacity. We formulate closed-form expressions for
the upper and lower bounds of the channel capacity and present the distribu-
tions of these bounds. The exact distributions of the overal channel capacity
and subchannel capacities are difficult to compute, however; we employ
Monte-Carlo simulations to observe histograms of these quantities.

This chapter is organized as follows. In Chapter 3.2, we present the
abstract multipath propagation model from which the spatial fading correla
tion is derived. In Chapter 3.3, we present the andysis of channel capacity,
most importantly the closed-form expressions for the distributions of the
bounds on channel capacity given the spatial fading correlation. In
Chapter 3.4 we employ Monte-Carlo simulations to obtain the histograms of
channel capacity. Concluding remarks can be found in Chapter 3.6.

3.2 Scatterer Model and Spatial Fading Correlation

Fig. 3-1 shows the “one-ring” model. This model will be employed to
determine the spatia fading correlation of the channel H. As we mentioned in
the introduction, this model has been employed in severa studies with some
minor variations. The “one-ring” mode is appropriate in the fixed wireless
communication context, where the base station (BS) is usually elevated and
unobstructed by loca scatterers and the subscriber unit (SU) is often sur-
rounded by local scatterers. For notational convenience, in this chapter the BS
and the SU assume the roles of transmitter and receiver, respectively. In other
words, we are taking aforward-link perspective. The parameters in the model
include the distance D between BS and SU, the radius R of the scatterer ring,
the angle of arrivd ® a the BS, and the geometrica arrangement of the
antenna sets. As seen by a particular antenna element, the angles of incoming
waves are confined within [® — A, ® + A]. Werefer to A as the angle spread.
Since D and R are typically large compared to the antenna spacing,
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7h

D R

TAp: transmitting antenna p
RA,: receiving antenna /
S(6): the scatterer at angle 6

@: angle of arrival
A: angle spread,
Dx_, v: the distance from object X to object Y.

Fig. 3-1. lllustration of the abstract “one-ring” model. The
size of the antenna sets are exaggerated for clarity.

A= arcsin(R/D). The “one-ring” modd is basicaly a ray-tracing model.
The following assumptions are generally made in this model ([15], [21]):

Every “actual scatterer” that lies a an angle 6 to the receiver is
represented by a corresponding “ effective scatterer” located at the
same angle on the scatterer ring centered on the SU. Actual scat-
terers, and thus effective scatterers, are assumed to be distributed
uniformly in 8. The effective scatterer located a angle © is
denoted by S(6). A phase ¢(0) is associated with S(0); ¢(8) rep-
resents the dielectric properties and the radia displacement from
the scatterer ring of the actual scatterer that S(8) represents [15].
Therefore, rays that are reflected by S(0)are dl subject to a phase
change of ¢(0). Statistically, ¢(68) is modeled as uniformly dis-
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Spatial Fading Correlation and Its Effects on Channel Capacity 21

tributed in [w, ) and i.i.d. in 6. The radius R of the scatterer ring
Is determined by the r.m.s. delay spread of the channel [15].

* Only rays that are reflected by the effective scatterers exactly
once are considered.

» All rays that reach the receiving antennas are equal in power.

In the limit of infinitely many scatterers, the normalized complex path
gain HI’, from transmitting antenna element TA,, to receiving antenna element
RA[ is

!

- L
14 Jtho

In (3-1), Dy _, y isthe distance from object X to object Y and A is the wave-
length. By the central limit theorem, H! constructed from (3-1) is N(0, 1).
Therefore, in the limit case the channel constructed according to the model is
purely Rayleigh fading [6] [25].

To study the spatia fading correlation, we use the following notation. If H
iISan m x n matrix then we use vec(H) to denote the mn x 1 vector formed
by stacking the columns of H under each other; that is, if H=(h h, ... h,),
where h;isan mx 1 vector for i = 1,..., n, then

n 2T .

vec(H) = (h{,h,,....h,)". (3-2)

The covariance matrix of H is defined as the covariance matrix of the vector
vec(H): cov(vec(H)) = E[vec(H)vec(H)"]. (Note that for a zero-mean
complex Gaussian vector g, the autocovariance is specified as the autocovari-
ance matrix of the vector (Re(g)' Im(g)'). Here, because it can be verified that
vec(H) constructed from the “one-ring” model is specia complex Gaussian,
the second-order doatistics of vec(H) are completely specified by
cov(vec(H)) [2].) The covariance between H] and HY is

i

k¥ _ 1 —2nj
E[H,H,"] = f;tf) CXP{ 5 P1A, - 50) " DA, > 5(0)

(3-3)

+Dg(g) > rA,~ Ps(6) > rA 1140
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(). - . I
TA , A
s e Vyden,
TAzV . R.Am
di(p, q) A

Fig. 3-2. Parameters used to derive the approximations for
E[H]H!*] in the “one-ring” model.

In general, (3-3) needs to be evaluated numerically. Fortunately, when Ais
small, which is often the case in fixed wireless applications, an approximation
for (3-3) exists that offers useful insights. The approximation is derived using
the notation illustrated in Fig. 3-2. In atwo-dimensiona plane, let the x-axis
be parald to the line that connects the BS and the SU. Let d7(p, g) denote
the diisplacement between TA,, and TA,, and d7(p, g) and dI(p, q) denote
the projections of d7(p, q) on the x-axis and y-axis, respectively. Similar
notations, d"(L, k). dk(l,k) and dy(i, k), apply to the SU side. Let €
denote the angle a which $(8)is Situated, as viewed from the center of the BS
antennarelative to the x-axis. When Ais small:

. s dl T -
Dra, - s0) = P1a,—5(6)® 4 (P, 9)c0sQq + d, (p, q)sin Dy,
* sinQy ~ (R/D)sind ~ Asin®,

2 2 2
e and cosQezl—%(%) sin%6 = 1—‘—11(%) +i(g) c0s20.

Substituting these approximations into (3-3):

l k% _ 1 T —275.
E[Hqu 1= EJ‘; exp{_xl[DTAp—)S(e)—DTAq—)S(e)

+ Dg(g) »rA,~ Ps(6) 5 rA, 13190
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1 on 27 T ( A% A2c0s20 T .
*5- 1o exp{—jy[dx(p,q) 1—71-+——4 )+Ady(p,q)s1n9
(3-4)
+d(1,k)sin® + d‘;(z, k)cos6] }de.

We evauate (3-4) for the following special cases. Note that

(1/2n) jg"exp(ixcose)de = Jy(x), where Jy(x) is the Bessel function of
the first kind of the zeroth order.

* From one BS antenna element to two SU antenna elements, as
dR(l,k)/R - 0, E[H;,Hg*] — Jo((2n/0)dR(1, k)).

*  From two BS antenna elements aigned on the y-axis to one SU
antenna element, de (r,g) =0,
E[H;)‘H’(;*] ~ JO(A(2n/x)dyT » 9).

* From two BS antenna elements aligned on the x-axis to one SU
antenna el ement, dyT (,q) =0,

22T, ¢)(1- 1a2) 2
E[H:H )~ e 4 JO((%) ?}%‘d} o, q)) .

A well-known result for diversity reception systems derived in [21] States that
when maximal-ratio combining is employed the degradation in capacity is
small even with fading correlation coefficients as high as 0.5. From our
numerical evaluations, we find that this is also a good rule of thumb for the
capacity of dual antenna-array systems (see Chapter 3.4). Here, to attain a
correlation coefficient lower than 0.5, the minimum antenna element separa-
tions employed by the three cases are 0.24A, 0.24A-!A, and 0.96A-2),
respectively.

If the minimum SU antenna spacing is sufficiently greater than half wave-
length, the correlation introduced by finite SU antenna element spacing is low
enough that the fades associated with two different SU antenna elements can
be considered independent. Mathematically, if the SU antenna spacing is large
enough, the n rows of H can be regarded as i.i.d. complex Gaussian row vec-

tors with covariance matrix ‘¥, Where\I’p g = E[H§H§*]. The channel cova
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nance matrix in this case is* cov(vec(H))= ¥ ® 1,,. Similarly, if the SU and
BS switches their roles as the transmitter and the receiver, cov(vec(H)) =

I ®W. Notethat if cov(vec(H))= ¥* ® ¥, the statistical properties of H

are identical to those of the product matrix AH Bt where H,, contains i.i.d.

R0, 1) entries, AAT = W7, and (BBtY = ¥*. In summary, if the fades
experienced by different SU antenna elements can be considered independent,
the following approximations can be used to analyze the channel capacity:

H~H BT inthe downlink (BS to SU) and

H~AH_, in the uplink (SU to BS). (35
In (3-5), the notation x ~ y means that “the distribution of x is identical to the
distribution of y. We will verify in Chapter 3.4 that (3-5) is a good approxi-

mation in the sense that the distribution of the eigenvalues of HH' — hence
the channel capacity distribution — is closely approximated.

3.3 Analysis of Channel Capacity

The channel capacity of an (n, m) channel given the channel realization H
subject to an average transmitter power constraint is described by (2-4):

C= tr(ZISasxpo& logz[det (l + c_rl_‘%HZ SHT)] (bits per channel use). (3-6)

Without loss of generality, in this chapter the noise variance cvz isstto 1.

2. The Kronecker product of matrices M and N is defined as

M(1, )N M(1,2)N ...
M®N = M2, )N M(2,2)N ...| -
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The MIMO channel is an n-input, m-output linear channel with i.i.d.
AWGN. With linear operations at both the input and the output of the channel,
an (n, m) channel can be transformed into an equivalent system consisting of
min(n, m) decoupled single-input, single-output (SISO) subchannels. To show
this, let the singular value decomposition of the channel matrix H be
H = UyDyVy,t . The transmitter left-multiplies the signal to be conveyed,
x;, by the unitary matrix Vy. Similarly, the receiver left-multiplies the
received signd r. by Uyt. That is, s_ = Vyx_, y = Uglr., and

u. = Uy ’fv Th@e unltary transforms do not affect the channel capacity.
Substltutlng theﬁe into (2-2), the input-output relationship between x; and y,
is

Y. =Dpyx_+u_, (3-7)

where the components of the noise vector u, are i.i.d. N(0, 1) . Denote the
diagonal entries of the nonnegative diagonal matrix Dy by g, k=1,2, ..., n
Writing (3-7) component-wise, we get

yT = ekxk+uk k=12,. (3-8)

Therefore, the multiplication of unitary matrices ¥V and Uy transforms an
(n, m) MIMO channel into n SO subchannels with (power) galns 2. Note
that €} are the eigenvalues of HH' because HH'U, = UyDg. The
channel capacity is the sum of the capacities of the n subchannels [2]. Sup-
pose that a normalized transmit power p, is alocated to the kth subchannels,
the channel capacity is

C =37 _  logy(1+pEd). (3-9)

From (3-9), channel capacity is determined by both and 2, whichis a
function of H, and p,, which does not depend on H. In this chapter, the focus
is on the effect of channel fading correlation. Not to make things overly com-
plicated, in this chapter we assume that the transmitted power is distributed
evenly to these subchannels [26]; i.e. p, = p/n. This is referred to as uni-
form power alocation. Uniform power allocation is robust, easy to analyze,
and amenable to implementation ([9], [26], [27]). We will examine the general
problem of power alocation in further detail in the next chapter.
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The channel capacity subject to a uniform power alocation constraint
p, = p/nis

C = logz(det (1+ EHHT)) =3 1logz(l + Ee,%) : (3-10)

Note that in this case the channel capacity isindependent of V. Thisproperty
makes uniform power alocation a good choice for systems in which the trans-
mitter cannot acquire the knowledge of H.

3.3.1 Bounds on Channel Capacity

The distribution of channel capacity can be calculated given the distribu-
tion of 7. However, for a general spatial fading covariance and a finite spa-
tial dimensionality, the distribution of € can be very difficult to compute.
The exact distributions of € and channel capacity will be studied using
Monte-Carlo simulations in the next section. Here, we formulate lower and
upper bounds on channel capacity based on the fading statistics (3-5). To
derive these bounds, we need the following mathematical tools.

(a) Let H,, be an m x n matrix whose entries are i.i.d. N(0, 1) . The sub-
script wis used to mean  “white”. Denote the QR decomposition of
H, by H, = QR, where Qis an orthogonal matrix and Ris an upper
triangular matrix. The upper diagonal entriesof Rarei.i.d. N(O, 1)
and are statistically independent of each other. The magnitude squares
of the diagonal entries of R, say |R}|2, are chi-squared distributed
with 2(m—I+ 1) degrees of freedom. These can be proved by apply-
ing the standard Householder transformation to the matrix H,, [28],
[29]. Clearly, H,Q, ~ Q,H ~H, for any unitary matrices Q; and
Q.

(b) For any diagonal matrix D and any upper-triangular matrix R,
det(DD' + RRY) > [T, (|D]|2 + |R{%).

(c) For any nonnegative definite matrix A, det(A) < HIA ,’

(d) For any unitary matrix Q and any square matrices X and Y,
det (I + XY) = det (/ + YX) and det (I + QXQ) = det (/ + X) .
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Next, we examine the following two specia cases. In the following, we
assumethat n<m.

Case |I. The fades are ii.d. Subdtituting H,, = QR into (3-10), the
channel capacity can be lower- and upper-bounded by, respectively,

C- logz( det (1 . E HHT)) (@) logz(det (1+5Rm))

@ ) 1logz(l + E|R{|2) : (3-11)

and

C = logz(det (I + ERRT))

Qa1+ BQRIT ] RID)- a-12)

From (a), |R}|? is chi-squared distributed with 2(m — | +1) degrees of
freedom. Also because ZZ el |R,‘c|2 is chi-squared distributed with
2(n — 1) degrees of freedom, the term |R;|2+ZZ= ” |RE|? in(3-12) ischi-
squared distributed with 2(m+n — 2 + 1) degrees of freedom. In short, the
channel capacity is lower bounded by the sum of the capacities of n subchan-
nels whose power gains are independently chi-squared distributed with
degrees of freedom 2m, 2m 2, ..., 2(m — n+ 1), and is upper bounded by
the sum of the capacities of n subchannels whose power gains are indepen-
dently  chi-squared  distributed ~ with  degrees  of  freedom
2(m+n - 1),2(m+n - 3), .., 2(m — n+ 1). The difference between the
mean values of the upper and the lower bounds is no greater than 1 bps/Hz per
spatial dimension. The lower bound was first derived by Foschini in [26]. In
fact, Foschini has proved that the mean values of the exact channel capacity
and its lower bound, both normalized to per-spatial dimension quantities, con-
verge to the same limit when n — « [26].

Team LRN



28 Chapter 3

Case Il. cov(vec(H)) = ¥®I, or I ®Y. We have shown in
Chapter 3.2 that in the “one-ring” model if the antenna array inside the scat-
terer ring (usually the SU) employs a sufficiently large antenna element
spacing, the fading covariance matrix can be approximated by ¥ ® /, inthe
downlink (BSto SU) and 7,, ® ¥ in the uplink (SU to BS), and the approxi-
mations in (3-5) apply. Note that if cov(vec( ))= ¥®1, for some nonnega-
tive definite ¥, the distributions of sk and hence the dlstrlbutlon of channel
capacity can be exactly calculated using the techniques developed for Wishart
matrices [28]. However, the calculation is generaly very difficult because it
involves the zona polynomials, which are notoriously difficult to compute.
Furthermore, the actual computation does not give us as much insight into the
problem compared to the following bounds.

SubstitutingH by AH BT into (3-10), we have

C~ logz[det (1 + EAHWBT(AHWBT)TH

(a)(d) logz[det (1 + EHWD},HWTDjﬂ . (3-13)

Here D, and Dy are diagonal matrices whose diagonal elements are the sin-
gular valueﬁ ofA and B', respectively. The diagonal entries of both D, and
Dy are ordered in descending order of their magnitudes down the dlagonal
Substituting #,, = QR and A = | in (3-13), the capacity in the downlink can
be bounded by:

C ~ log, | det (1+ EHWDI%HWTH

Ox0 S loga(1+ (E) D54 D[R] G119

and

(c)(d)
c <y togy(1+(O)Dyth DRARIZ+ 32, [RYD) . 3-15)
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Similar to the case when the fades are i.i.d., the channel capacity is still lower-
and upper- bounded by the total capacity of n independent SISO subchannels,
and the difference between the mean values of the upper and the lower bound
islessthan 1 bps/Hz per spatial dimension. Due to the spatial fading correla-
tion, the power gain of the | th subchannel is scaled by a factor of|DB(l, l)|2
(or, on decibel scale, augmented by 10log,o|Dg(/, 1)|? dB). Note that
because the trace of Dg is equal to n, when compared to the situation in
which the fades are i.i.d., the path gains of some subchannels are scaled up
while others are scaled down.

When the number of antenna elements is large, determining the channel
capacity through simulation is very computation-intensive. The upper bound
in (3-15) can be employed to investigate the capacity when the number of
antennaelements is large. Let E(C) denote the mean value of channel capacity
a a fixed average total power constraint p. For any concave function f(x),
E(f(x)) <f(E(x)). Thus an upper bound of E(C), denoted by E(C), in the
downlink direction can be derived from (3-15) by substituting the mean values
of chi-squared random variables for them:

BO)< 5. ors(1+ S04 OPE(RI ], )
(3-16)
=2 llogz(l + S|DB(I, D|2(m+n-21+ 1)) =E(C).

Note that due to the normalization used in this chapter, the mean value of a
chi-squared random variable with 2k degrees of freedom is k.

For an example of the applications of the bounds, we employ (3-16) to
investigate the effect of angle spread on the relation between E(C) and the
number of antenna elements n = m. The result is displayed in Fig. 3-3. (The
definitions of broadside and inline linear antenna arrays will be given in
Chapter 3.4.) The bounds permit us to compute E(C) even when nis large.

3.3.2 Effective Degrees of Freedom

We have shown in (3-9) that an (n, m) channel can be decomposed into an
equivalent system of min(n, m) SISO subchannels whose path power gains are
the eigenvalues of HH'. Based on this decomposition, one would intuitively
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Fig. 3-3. The effect of angle spread A on the relationship
between the upper bound of mean capacity, E(C), and the
number of antenna elements n= m. The fixed overall power

constraint is p = 18dB.

expect that the channel capacity of an (n, n) channel grows roughly linearly
with n for a given fixed transmitted power, because if pe?/n»1 for
k=12 ...,n, (3-10) can be approximated by

€
CP~3r_, 1og2(p7’% . (3-17)
However, this high-SNR condition may not be met in practice. If pe2/n
is much smaler than one for some k, the capacity provided by the kth sub-
channel is nearly zero. This may occur when the communication system oper-
ates in alow-SNR setting, e. g., in long-range communication application or
transmission from low-power devices. On the other hand, it may occur if with
significant probability e,% is very small, which is a direct result of severe
fading correlation. Here we introduce the concept of effective degrees of
freedom (EDOF), which is a parameter that represents the number of sub-
channels actively participating in conveying information under a given st of
operating conditions. It is well known that for an SISO channel, at high SNR a
G-fold increase in the transmitter power results in an increase in the channel
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capacity of log,G bps/Hz. If asystem is equivalent to EDOF SISO channelsin
parallel, the capacity of the system should increase by (EDOF - log,G) bps/
Hz when the transmitter power is raised by afactor of G. In light of this, we
define EDOF a a given transmit power p and outage probability q to be

d S
EDOF =—C (2 . 3-18
25C4¢ p)}8=0 (3-18)

We note that EDOF is a real number in [0, n]. Although them x n
channel matrix H has rank n with probability one in general, the power alo-
cated to (n — EDOF) out of the n dimensionsis very poorly utilized. EDOF is
afunction of spatial fading correlation and SNR; its value is higher when SNR
isincreased.

For an extreme example of how fading correlation affects EDOF, consider
the fading correlation in the “one-ring” model when the angle spread
approaches zero. In such acase, |E[h}hL*1| - 1. Therefore, the n columns
of H are perfectly correlated, and only one of the n eigenvalues of HH' has
significant probability of being practically nonzero. The overdl effect is that,
as the angle spread approaches zero, EDOF approaches one. The capacity that
an (n, n) dual antenna-array system provides thus degenerates to that provided
by a (1, n) multiple antenna system.

3.4 Simulation Results

In this section, we present the capacity of dual antenna-array systems
obtained from Monte-Carlo simulations. Simulation is necessary because
computing the distributions of channel capacity, subchannel gains and sub-
channel capacities analytically is very difficult. The results in this section
illustrate the effect of the antenna geometry and the physical dimensions of
the scattering environment on the statistics of channel capacity. Another god
IS to verify that (3-5) is a good approximation to the exact channel distribu-
tion.
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3.4.1 Simulation Algorithm

Fig. 3-4 shows the arrangement of antenna elements. We have chosen a
fixed number of antennaelements m = n = 7. In Fig. 3-4(a), seven antenna
elements are equally spaced aong an axis. This is referred to as a linear
antennaarray. In Fig. 3-4(a) we aso define the angle of arrival © at the BS for
linear antenna arrays. Following conventional notation [15], we use the term
“broadside” and “inline” to refer to the situations when ® = 0° and
® = 90°, respectively. In Fig. 3-4(b), seven antennas are arranged on a hex-
agonal planar array. This is referred to as the hexagon antenna array. For
planar antenna sets, the hexagonal arrangement achieves the highest antenna
density per unit area for a given nearest-neighbor antenna spacing. Further-
more, the effects of the angle of arrival are not significant, due to the sym-
metry of the hexagon. Three configurations are considered: broadside and
inline linear antenna array at the BS with inline linear antenna array at the SU,
and hexagon antenna arrays at both the BS and the SU. The nearest-neighbor
separations between antenna elements of the BS and the SU antenna sets are
denoted by dt and dr, respectively. Again the BS and the SU assume the roles
of the transmitter and the receiver, respectively.

Given A, dt, and dr, one way to generate the channel realization is to ran-
domly select the angular positions and phases of the equivalent scatterers and
compute H using ray tracing. When the number of scatterers is large, an
equivalent way is as follows. First, compute the channel covariance matrix
cov(vec(H)) from (3-4). Let ¥ =cov(vec(H)) and ¥ = ¥1/2(¢/'2) The

® (S
0 oo
>

(@) (b)

Fig. 3-4. Antenna array arrangement. Note the definitions of
the angle of arrival ® and the minimum antenna element
spacing d. (a) Linear antenna array. (b) Hexagon antenna
array.
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instance s of H can then be generated by premultiplying a white channel,
vec(H,,), by ¥1/2 . That is,

vec(H) = ¥1/2vec(H,). (3-19)

We generated 10,000 instances of channel and collected the statistics of
channel capacity and ordered eigenvalues of HH'. The average received
SNR p ischosen to be 18 dB. For comparison purposes, the 10% outage
channel capacities Cy; of (1, 1), (1, 7), and (7, 7) systems over i.i.d. Ray-
leigh-fading channels given p=18 dB are 294, 7.99, and 32.0 bpgHz,
respectively.

3.4.2 Results

The physical parametersin the “one-ring” model include the angle spread,
angle of arrival, antenna spacing, and antenna arrangement. First, we investi-
gate the effect of angle spread A. Fig. 3-5(a) shows the complementary cumu-
lative distribution function (ccdf) of channel capacity with hexagon antenna
arrays versus A. The support of the transition region of the ccdf curve moves
toward lower capacity vaues as the angle spread decreases. Note that when
the angle spread is extremely smal (A<0.6°), the ccdf for the channel
capacity of a (7, 7) dua antenna-array systems with hexagon antenna arraysis
identical to that of a (1, 7) diversity reception system with maximal-ratio com-
bining. Fig. 3-5(b) shows C; for the three configurations of antenna arrays
versus A. For all three, C, decreases monotonically as the angle spread
decreases. Intuitively, because the difference in path lengths from two trans-
mitting antenna elements to any scatterer becomes smaller as A decreases, it
becomes increasingly difficult for the receiver to distinguish between the
transmissions of the various transmitting antenna elements. Mathematically,
the correlation between the columns of H increases as A decreases. Fig. 3-5(c)
shows that the EDOF of each type of antenna array settings indeed decreases
as the angle spread decreases.

The simulation also provides the pdfs of the ordered eigenvalues of HH'.
The magnitude of €7 is best displayed in decibel units. Let p, = 10log €7,
and let pi(n,) denote the pdf of p,. Fig. 3-6 displays pi(py). The followings
are observed. As the angle spread A decreases, (a) the median of p, increases
slightly, (b) the medians of p,, k > 2, decrease, and (c) the difference between
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Fig. 3-5. (a) The ccdf of channel capacity with hexagon
antenna arrays given various angle spreads. dt= dr= 0.5\.
The reference curves are the ccdfs of channel capacity when
assuming His a 7x7, 1x7, and 1x1 matrix with i.i.d.
N(0, 1) entries, respectively. (b} Cy ¢ versus angle spread.
(c) EDOF versus angle spread.

the medians of p; and py,; increases for al k. These observations indicate
that, statistically, as A decreases, the disparity among ., i.e. the disparity
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among the subchannels in (3-8), increases. The pdfs a,% aso provide a conve-
nient way to estimate the EDOF. The average received SNR necessary to
obtain a certain EDOF can be estimated from Fig. 3-6 as follows. For anatural
number z, the average received SNR necessary for EDOF = z isapproximately
-a, where a is determined by J:pz(uz)dpz =09.

Secondly, we investigate the effect of the BS antenna spacing df.
Fig. 3-7(a) shows the ccdf of channel capacity with hexagon antennaarraysin
the large angle spread sefting (D = 1000A, A = 15°, dr=0.54). We find
that the channel capacity increases greatly as dt increases. In Fig. 3-7(a), sim-
ilar to Fig. 3-5(a), the support of the transition part of the ccdf curve moves
toward higher capacity values as dt increases. Fig. 3-7(b) and Fig. 3-7(c) dis-
play the relation between Cy ; and dt for the three types of antenna array s&t-
tings in the large and smal (D =100,000%, A = 0.6°, dr=0.5A) angle
spread settings, respectively. Given afixed dt, the capacity of a (7, 7) system
with broadside linear antenna array is always higher than that of a (7, 7)
system with hexagon antenna array which, in turn, is always higher than that
of a(7, 7) system with inline linear antenna array. In Chapter 3.3, we showed
that the effectiveness of reducing the fading correlation by increasing the BS
antenna spacing dong the axes perpendicular and parallel to the arriving
waves are different. To attain zero fading correlation with inline linear antenna
arrays, the BS antenna spacing must be 4/A times of the spacing required
when using broadside linear antenna arrays. The difference in effectiveness is
confirmed here by simulation. Note that because the Bessdl function gov-
erning the relation between antenna spacing and fading correlation is not
monotonic, the channel capacity does not decrease monotonically as dt is
decreased. This can be seenin Fig. 3-7(b).

Thirdly, we examine the effect of the SU antenna spacing dr. Fig. 3-8(a)
shows the ccdf of channel capacity with hexagon antenna arrays in the large
angle spread setting (D = 10004, A = 15°, dr=0.5)). Fig. 3-8(b) and
Fig. 3-8(c) display Cy versus dr in the large and smal (D =100,0002,
A = 0.6°, dr=5)\) angle spread settings, respectively. The ccdf curves of
channel capacity become steeper as dr increases. This results in an improve-
ment in Cp 4, but such an improvement is not nearly as significant as the
capacity improvement while increasing dt. The analysis in Chapter 3.3
explains the striking difference between increasing the antenna spacing a the
BS and at the SU, in terms of effectiveness in improving channel capacity.
Once the antenna spacing a the SU is more than ahalf wavelength, the corre-
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Fig. 3-6. The pdfs of the ordered eigenvalues of HH* based
on the “one-ring” model. Here, &7 is the kth largest
eigenvalue of HH' and p(u,) is the pdf of u, = 10log,,e?.
The number of antennas is n= m =7, and hexagon antenna
arrays are employed. The pdfs are normalized to have the
same height for display purpose. (a) l.i.d. fades. (b) Large
angle spread setting. {c) Small angle spread setting.
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Fig. 3-7. (a) The ccdt of capacity of (7, 7) hexagon antenna
array with A = 15°, dr=0.5\. (b) Cy ¢ versus dt for large angle
spread (A = 15°, dr= 0.51). (c) Cy ¢ versus at for small angle
spread (A = 0.6°, dr=0.5%). In (b) and (c) we use % to mark
the smallest dt with which the maximum fading correlation
coefficient is 0.5. After the maximum fading correlation
coefficient is reduced to under 0.5, the benefit of increasing dt

starts to saturate.

Team LRN



38 Chapter 3

1
0.9t
081" 1 I broadside linear

0.7 21, 2.51, 3\ 4 W
0.6
0.5
0.4
0.3
0.2
0.1
0 : L 1 5 L ) .
10 12 14 16 18 20 0 1 2 3 &
Capacity (bps/Hz) Su Antenna(E;)acing ar(r)

(@)

20 . T

\*]
(4]

nN
o

__ hexagon_ |

inline linear .

Co.1 (bps/Hz)
o

—y
o

Prob. [Capacity > Abscissa]

15¢ broadside linear-

hexagon

Co.1 (bps/Hz)

inline linear

5 L 1
0.1 1 10 100
SU Antenna Spacing dr (1)

()

Fig. 3-8. (a) The ccdf of capacity of a (7, 7) dual antenna-
array system with hexagon antenna arrays at various values
of drwith A = 15°, dt = 0.51. (b) Cy 4 versus dr for large angle
spread (A = 15°, dt = 0.5)). (c) Cy ¢ versus drfor small angle
spread (A = 0.6°, dt = 5)).

lation coefficient between any two entries on acolumn of H is generally lower
than 0.5. The fading correlation is aready low and therefore cannot be
reduced significantly by increasing dr.
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We conclude that the angle spread and the BS antenna spacing perpendic-
ular to the direction of the arriving waves a the BS dominates the channel
correlation and thus the channel capacity. If the incoming waves are known to
come from a certain direction, it is advantageous to deploy a broadside linear
antenna array. On the other hand, if omnidirectional coverage is the god, an
antenna array with a symmetric configuration, such as the hexagon antenna
array, is clearly the better choice.

Fig. 39 compares the eigenvalue distributions of HH' and
(H,BY)(H, B given the parameters dr=dr =3 and A =15° and 06°.
Very good agreement is observed. The results in Fig. 3-8 dso show that the
overestimate of channel capacity caused by assuming the rows of H are uncor-
related is not substantial. These results demonstrate that (3-5) is a valid
approximation in the downlink if the SU employs an antenna spacing suffi-
ciently large.

3.5 Two-ring Model

In certain applications such as indoor wireless systems and mobile-to-
mobile communications, it is common to find that both ends of the link are
surrounded by local scatterers. In these cases the “one-ring” mode is no
longer appropriate. Fig. 3-10 illustrates the “two-ring” model, which is a nat-
ural extension of the “one-ring” model. In the “two-ring” model, acommuni-
cation entity always has aring of scatterers centered around it.

The path gain H, in the “two-ring” model is obtained through ray-
tracing in amanner similar to (3-1) in the “one-ring” model. That is, ignoring
the path amplitude loss,

K,

> X CXP{ (DTA - 5,0

Hj = «/K Kop=11=1

*Ds 8> 5,0) * Dsy0) > ra,) +701(0)) +762(8)) }.

(3-20)

In (3-20), Sy(By) refers to the kth scatterer on the scatterer ring around user u,
u= 1, 2. The additive phase component ¢,(8,) refersto the phase associated
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Fig. 3-9. The distributions of the eigenvalues of HH' (thick,
elevated curves) and H, B'(H,B')" (thin curves) given the
parameters dt = dr= 3\ and A = 15° (a) and 0.6° (b).

with the scatterer S,(0,) . It is assumed that the additive phases are indepen-
dently uniformly distributed.

Unfortunately, in contrast to the “one-ring” model, as both K; — o and
K, — o, the channel gain H4 does not converge to a Gaussian random vari-
able. Therefore, it is not enough to completely describe the statistics of the
channel by specifying the channel covariance matrix cov(vec(H)). Instead,
we will generate instances of channel realizations through ray-tracing and use
them in subsequent Monte-Carlo simulations to study the statistical properties
of the channel.
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r D l

Fig. 3-10. lllustration of the abstract “two-ring” model. The
size of the antenna sets are exaggerated for clarity.

Fig. 3-11 displays the capacity distribution at different separations
between the two communicating entities. It is obvious that as the distance
between the two communicating entities increases, the channel capacity
decreases as aresult of increasing fading correlation. Because the two antenna
arrays are both surrounded by local scatterers, the variation of the capacity
distributions due to the orientation and the physical configurations of the
antenna arrays is insignificant. We aso found that the effect of antenna
spacing is small if the antenna spacing is more than half a wavelength.

3.6 Summary

In previous studies that analyze the channel capacity of dua antenna-
array systems, a common assumption is that the fades between pairs of
transmit-receive antenna elements arei.i.d. However, in real propagation envi-
ronments, fading correlation does exist, and can potentially lead to a capacity
lower than that predicted under the i.i.d. fading assumption. In this chapter,
we proposed an abstract model for the multipath propagation environment.
Using the model, the spatial fading correlation and its effect on the channel
capacity can be determined.

The “one-ring” model can reasonably represent a scattering environment
in which one of the communicating parties, the SU, is surrounded by loca
scatterers. The channel correlation based on the “one-ring” model is a func-
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Fig. 3-11. Capacity according to the “two-ring” model. (a) The
ccdf of capacity of a (7, 7) dual antenna-array system with
linear antenna arrays at various distance between the
communicating entities. (b) Cq ¢ versus distance D.

tion of antenna spacing, antenna arrangement, angle spread, and the angle of
arrival. When the angle spread is small, the contributions to the spatial fading
correlation from the SU antenna element spacing and the BS antenna element
spacing (both parallel to and perpendicular to the direction of wave arrival)
are significantly different. We derived expressons for approximate fading
correlation to highlight their differences. We considered the situations in
which the antenna element spacing a the SU is sufficient that the correlaion
among the entries on any column of the channel matrix is negligible.

To understand the effect of fading correlation on channel capacity analyti-
caly, we first showed that an (n, m) MIMO channel consists of min(n, m)
SISO subchannels, or eigenmodes. The MIMO channel capacity is the sum of
the individual subchannel capacities; the gains of these subchannels are the
min(n, m) largest eigenvalues of HH'. When the SU antenna spacing is suffi-
ciently large, the power gains of these subchannels are independent scaled
chi-squared distributed random variables with
2m-n+1),2(m-n+2),...,2m
2m-n+1),2(m-n+3),...,2(m+n-1)) degrees of freedom. The
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fading correlation determines the scaling factors. The stronger the fading cor-
relation, the higher the disparity between these scaling factors. As the fading
correlation becomes more severe, more and more subchannels have gains too
small to convey information at any significant rate. We defined the parameter
effective degrees of freedom (EDOF) to represent the number of subchannels
that actively contribute to the overall channel capacity.

We performed Monte-Carlo simulations to study quantities that are very
difficult to compute analyticaly, such as the distributions of the eigenvalues
of HH" and the channel capacity. We found that when the angle spread is
small, the product of angle spread and antenna spacing perpendicular to the
direction of wave arrival is akey parameter. In general, the higher the product,
the higher the channel capacity. The BS antenna separation parald to the
direction of wave arrival has a much less importance in determining fading
correlation unless the separation is very large. If the direction of wave arrival
IS known approximately, it is advantageous to deploy a broadside linear
antenna array with alarge antenna spacing; but if omnidirectional coverage is
the goa, an antenna array with a symmetric configuration, such as a hexagon
antenna array, is clearly the best choice.
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POWER-ALLOCATION
STRATEGIES

4.1 Introduction

The channel capacity of an (n, m) channel H subject to the autocovariance
congtraint on the input signal E[s s ] = Z, is

C= logz[det (1 + LzHZ SHT)} (bits per channel use). (4-1)
GV

In this chapter, a power-alocation strategy specifically refers to the way the
autocovariance matrix X is chosen.

The objective of a power-allocation strategy is to achieve a high capacity
given the power and channel knowledge available a the transmitter.
Throughout this chapter, we assume that the total average transmit power (i.e.,
sum over all n antennas) is constrained. We consider three power-allocation
strategies: the optimum power allocation, the uniform power alocation, and
the stochastic water-filling power-allocation strategy. The choice of power-
alocation strategy depends on the type of CSI available to the transmitter.

In this chapter, power-allocation strategies are regarded as constraints on
the channel. The channel capacity with a certain power alocation strategy
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means the maximal achievable mutual information between the input and the
output given that the autocovariance matrix Zg must be chosen according to
the particular power-allocation strategy.

If instantaneous CSl is available to the transmitter, then the optimum
power alocation can be employed [2], [9]. In many applications, however,
practical difficulties make it impossible for the transmitter to have instanta-
neous CSI. We use the term “blind transmission” to describe situations in
which the transmitter does not have instantaneous CSl. In blind transmission
systems, optimum power allocation cannot be used, and uniform power alo-
cation, which allocates equal power to each individual transmitting antenna, is
usually considered, eg., [26]. Besides being applicable to blind transmission
systems, uniform power dlocation is robust, easy to implement, and easy to
anayze.

In some situations, such as fixed wireless systems, athough the trans-
mitter does not have access to instantaneous CSl, it can acquire knowledge of
the spatial correlation properties of the channel fading. This is posshble
because the spatia fading correlation properties are locally stationary. For
blind transmission systems in which the channel correlation isknown, we pro-
pose the stochastic water-filling power alocation strategy. The stochastic
water-filling power alocation is inspired by the conventional water-filling
procedure, and is computed using a procedure described below.

A major goa of this chapter is to examine the combined effects of the
power-allocation strategy and the fading correlation on the capacity of dual
antenna-array systems. We have demonstrated in the previous chapter that in
environments where spatial fading correlation is strong, this independent
fading idedization often leads to a significant overestimation of channel
capacity. In this chapter, the channel fading correlation is modeled using the
“one-ring” model developed in Chapter 3. This model is appropriate for typ-
ical outdoor fixed wireless applications.

We compare the channel capacities obtained in independent- and corre-
lated-fading environments with the three power allocation strategies. We will
show that if the fades are independent, for medium to high SNR, optimum and
uniform power-allocation strategies offer nearly equal capacities. Therefore,
with low fading correlation, the availability of CSl a the transmitter does not
constitute a significant advantage. In contrast, when the fades are highly cor-
related, the difference between capacities achieved by optimum and uniform
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power alocations is significant. This result motivates us to devise the sto-
chastic water-filling procedure. While it might at first seem impossible to per-

form an optimization similar to water-filling without knowledge of the
instantaneous CSI, we will demonstrate that with high probability the sto-
chastic water-filling power-allocation strategy achieves a significantly higher
capacity than the uniform power dlocation in the downlink direction (trans-
mission from the unobstructed end of the link). We will aso prove that in the
uplink direction (the opposite direction of downlink), the uniform power alo-

cation achieves the highest average channel capacity. This asymmetry arises
because in the “one-ring” scatterer model, one end of the link is unobstructed,

while the other end of the link is surrounded by aring of scatterers.

The processing power available a the receiver can dso influence the
choice of power-alocation strategy. For blind transmission systems, if the
transmitted data rate is increased in proportion to n, ML processing the
received signal in general leads to a complexity that increases exponentially
with n [43]. One way to reduce the recelver complexity is to one-dimension-
alizethemultidimensional signal-processingtask. In other words, thereceiver
first derives n signals from the received signal, and then processes these n Sig-
nals independently. An example is the layered space-time (LST) architecture
[26]. Note that when optimum power-allocation strategy is employed, the
(n, m) MIMO channel is automaticaly decomposed into an equivalent system
of min(n, m) parallel single-input, single-output (SISO) channels with i.i.d.
noises [2], [9]. Therefore, one-dimensional (1-D) signal processing is a direct
result of using optimum power-alocation srategy, and the reduction of
receiver complexity comes without loss of capacity. However, with other
power-allocation strategies, there can be a capacity penalty associated with
one-dimensiondlizing. In this chapter, we examine this capecity pendty for
systems that use the uniform power allocation and the stochastic water-filling
power allocation.

The remainder of this chapter is organized as follows. In Chapter 4.2, we
present lower bounds on capacities that we use to analyze the effect of fading
correlation on channel capacity. In Chapter 4.3, we examine blind transmis-
sion systems in more detail. We propose the stochastic water-filling procedure
and demonstrate that such a nonuniform power alocation achieves a higher
capacity than uniform power dlocation in the downlink direction. We aso
prove that in the uplink direction uniform power alocation achieves the
highest average capacity. In Chapter 4.4, we introduce the concept of one-
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dimensional processing and quantify the associated capacity penalty. In
Chapter 4.5, we provide numerical evaluations of channel capacity for typical
configurations. We present concluding remarks in Chapter 4.6.

4.2 Power-Allocation Strategies

4.2.1 Optimum Power-Allocation Strategy

If the transmitter knows H, it can sdlect £, to maximize the mutua infor-
mation in (4-1). We believe that the problem was first studied by Teletar in
[2]. For the benefit of the readers, we briefly summarize the results here. Con-
sider that the only constraint is an average power condtrant, i.e
tr(Z,) < pog. Given achannel realization H, the channel capacity is

C= tr(Z?;a;pcvz log2[det (1 + GLEH = SHT)} (bits per channel use). (4-2)
The channel capacity is achieved by zero-mean complex Gaussian inputs
whose covariance matrix maximizes the objective in (4-2). Henceforth in this
chapter, we will set 03 = 1. To demonstrate how to compute this optimum
autocovariance matrix Z.*, let the singular value decomposition representa-
tion of H and X, be H = UyDyVy' and T, = UD U, respectively.
Substituting these in (4-2), the objective now becomes

log,[det (I + UyDyVyTE (UyDy VD1 s
= log,[det (/ + D, ViU DU TV,D )]

It is known that choosing U, = V, maximizes (4-3) [2]. Substituting
U, = Vy into (4-2), the capacity now becomes

_ 2
C= tr(ESa_épcvz log,{det (I +|Dy|*D )]
= max Zﬁ 1 log,(1 + }DH(k, k)’ZDS(k, k)). (4-4)

tr(Z,) < po?
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TA, 'RA
V& s, . channel ?
* z » I . —> 1,
: : : ‘RA :
s= 3" U e |
x" k=17 "k : H r,

Ux r=Hs+v
=HUx +v

Fig. 4-1. Diagram illustrating the discrete-time input-output
relationship of a dual antenna-array system. The transmitted
signal s is a linear combination of n orthonormal n-tuples u,.
TA; stands for the transmitting antenna / and RA; stands for
the receiving antenna j.

The matrix D * that maximizes the summation term in (4-4) is the classical
water-filling solution [8]:

D (kk)* = |p—-———| , (4-5)
[tk B

were (g)* denotes the larger of 0 and g, and p is chosen such that
Zn_le("’ k)* = p . Therefore, the optimum power alocation is
sAZ v, DVt

The transmitted signal s can be visualized as being obtained by filtering a
complex Gaussian n-tuple x with independent entries, as is illustrated in Fig.
4-1. The kth component of x, x¥, has variance D (k, k). In this chapter, the
term power alocation refers not only to the choice of D —the distribution of
power among the components of x — but also to the choice of the unitary
transformation Uy that transforms x into s. The columns of Uy constitute an
orthonormal basis in an n-dimensional space; thus we will refer to Uy as the
“transmit basis’. For convenience, we will refer to the transmit basis of the
optimum power allocation as the “optimum transmit basis’.

When the transmitter employs U, = V,;, it leads to a significant advan-
tage, i.e., the receiver can utilize one-dimensional signal processing without
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loss in capacity [2]. To see this, refer to Fig. 4-1. Let x bean nx 1 vector
whose components are independent complex Gaussian random variables with
variance Dy(k, k). The vector x is filtered by the unitary transformation U to
generate the transmitted vector s. The receiver, which aso knows the channel,
can filter the received signal r by a unitary transformation U," . Substituting
s=Ux, y=Ug'r,and v = Uyfv into (2-2), we obtain a set of n
single-input, single-output linear subchannels withi.i.d. N(0, 1) AWGN:

Vi = Dk, )x +vy  k=1,2, . n. (4-6)

Clearly, maximum-likelihood estimation of x; from y, involves only one spa-
tial dimension.

4.2.2 Uniform Power-Allocation Strategy

In the uniform power alocation, the covariance matrix of s, is chosen to
be ; = (p/n)I,. This can done by choosing D; = (p/n)I,.There is no
constraint placed on the selection of transmit basis Ug; all unitary Uy lead to
X, = UDUST = (p/m)I. Given the congraint that Z; = (p/n)l, the
capacity can be obtained by substituting Z into (4-1),

C = Z: _ 11082(1 + E|DH(k’ k)| 2) . (4-7)

Because the capacity does not depend on the transmit basis U, uniform power
alocation can be used in applications in which the transmitter does not know
H.

With uniform power alocation, because the n components of s are statisti-
caly independent with the same power, one can treat these n components
symmetrically without having to apply different coding, modulation, and
signal processing techniques on these n components. Thus it may be desirable
from apractica point of view to distribute power uniformly, even when CSl is
available at the transmitter. In this case, though the choice of transmit basis
does not affect capacity, the optimum transmit basis can still be used to take
advantage of the capacity-lossless decomposition of the MIMO channel into
SISO subchannels.
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4.2.3 Effects of Fading Correlation

The spatial fading correlation cov(H) determines the distribution of the
singular valuesof H which, inturn, determines the distribution of the capacity
specified by (4-4) and (4-7). We have shown in Chapter 3 that deriving a
closed-form expression for the distribution of the singular values of H is a
best tedious and is usually impossible. Here, we study the effects of cov(H) on
capacity using a capacity lower bound for the capacity. This lower bound is
reasonably close to the exact capacity and leads to useful insights.

Let us review briefly the results on spatid fading correlation. According
tothe*one-ring” model, inthedownlink direction the covariance matrix of H
can be well gpproximated by cov(vec(H)) ~ ‘¥R ®1, ,where ® dands for
matrix Kronecker product. The constant matrix ¥ can be computed from the
physical parameters of the antennas (e.g., antenna spacing), and of the multi-
path environments (e.g., angle spread). The distribution of the channel matrix
H is therefore well approximated by the distribution of H, Bt and B'H,, for
the downlink and uplink, respectively, where BBt = (¥X)'.

Expressing the channel H as a “colored” version of a white channel H,,
enables us to make use of the following properties of matrices with i.i.d. cir-
cularly symmetric complex Gaussian matrices:

« For any nx n unitary matrices U and V, the distribution of UH,, V'
is identical to that of H,, [2].

* Let the QR decompostion of #, be H,, = Q, R, . The squared
amplitude of the kth element on the diagonal of R, |R,(k, k)% is
chi-squared distributed with 2(n -k + 1) degrees of freedom, and
that all the diagonal and upper-diagonal entries of R, are mutually
independent [29]. Note that due to the fact that the real and imaginary
parts of any entry of H,, are independently Gaussian distributed with
variance 1/ 2, the expected value of a chi-squared random variable
with 2| degrees of freedom is .

Consider a downlink communication, inwhich H~H_B'.n (4-1), we
substitute for H by H, BY, and use the singular value decomposition
Bt = UpDgV,' and the QR decomposition H,, = @ R,,.Weobtain
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C ~ log,[det (/ + H B'T BH 1)]
(4-8)
~logy[det (I + R, DgVgtE VD R ).

By arbitrarily choosing £, = VzD VT ,we can formulate a lower-bound of
(4-8):

C ~ log,[det (I + RWDBDSDBRWT)]
4-9)
>y logy(1+ D (k k)DR(k, b)|R,,(k k)|?).

Equation (4-9) indicates that the capacity with optimum power allocation
is lower-bounded by the maximal combined capacity of the following system:

n SISO subchannels y, = Dk, k)|R, (k, B)?x + v, k= 1,2, .., n,
where

IR, (k, k)|? is chi-squared distributed with 2(n —k + 1) degrees of
freedom,

* x; is zero-mean circularly symmetric complex Gaussian with variance
Dk, k),

* v,/ is zero-mean circularly symmetric complex Gaussian with vari-
ance o2, and

+ dl random variables mentioned (|R,, (%, k)l2, xpand v,') ae mutu-
aly independent.

Given Dg and R,,, the capacity of this system is again maximized by a water-
filling solution Dy.

It is clear that the effect of fading correlation on the capacity lower bound
is to scale the power gain of the kth subchannel by D3(k, k) . When the fades
are i.i.d, D3(k k) = 1 forall kand these n subchannels are scaled equally.
When the fades are correlated, the gains of some channels are enhanced while
those of others are reduced, because the trace of D3 is equal to n. In the
uplink, this interpretation no longer applies, as will be shown in Chapter 4.4.
Nevertheless, because the singular values of Hand H' are the same, the net
effect of fading correlation on capacity when optimum or uniform power-alo-
cation strategy is employed is exactly the same as that in the downlink. The
effects of fading correlation on the distribution of the ordered eigenvalues of

Team LRN



Power-Allocation Strategies 53

HH' is observed to enhance the first few largest eigenvalues and decrease
the rest as well (Chapter 3.4).

4.2.4 Asymptotical Behavior of Channel Capacity with Optimal
Power Allocation

We have shown in Chapter 2 that, with uniform power allocation, under
the independent fading assumption, the ratio of capacity to the number of
antennas of an (n, n) channel converges aimost surely to a nonzero constant.
Here we will show that with optimum power allocation the ratio of capacity to
the number of antennas aso converges almost surely to a nonzero number,
which isafunction of SNR. This result is due to Chuah, Kahn, and Tse [9].

Congder a given n. We randomly generate an instance of an nxn
channel H,, whose entries arei.i.d. N(0, 1).Let F, bethe empirical distribu-
tion of the eigenvalues of H,H,. That is, F, (%) is defined as the fraction of
the eigenvalues of H H,T that is less than or equal to A.Note that F,is a
function of H,and is arandom function. The following theorem describes the
asymptotical property of F,as n — .

Theorem. Define G,(A) =F,(n)). Then amogt surely, G, converges to a
nonrandom distribution G* , which has adensity given by

1 1
Ll o0s<asa,
Waw 0shs4 (4-10)

otherwise.

g =

O Q=

We have aready made use of this theorem in Chapter 2. Using this theorem,
the asymptotic performance of channel capacity with full CSl & the trans-
mitter can be derived as well.

Theorem. Denote the channel capacity with full CSl at the transmitter given
channel Hby Cop( H). Almost surely,
Cc (H
_OM - C* 4-11)
n

where
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C* = J;‘)(ln(ux)y*-;‘r /i—idx (4-12)

and p satisfies

4
j(p—%)+-% /%-idx =p. (4-13)
0

The results in (4-12) and (2-7) can be combined to obtain the benefit of
optimal power alocation over uniform power alocation when n — o [9].
When n—w, C  (H,)/n—>C* and C,/n— Cy*. Using L'Hopitd's
rule, it can be shown that at low SNR,

lim * -4, (4-14)
p—0 Cuni*
At high SNR,
*
lim 1. (4-15)
p—=>x© Cuni*

4.3 Blind Transmission Systems

A blind transmisson system cannot employ optimum power-allocation
drategy due to the lack of instantaneous CSl. Although uniform power-allo-
cation drategy can be used to achieve robust performance against channel
uncertainty, if the spatial fading correlation is high it results in a significant
loss in capacity when compared to using optimum power-allocation strategy.
Conceptually, the capacity loss arises mainly because, with a uniform power
distribution, part of the transmitted power is alocated to subchannels with
low gains. The goa of this section is to devise a nonuniform power allocation,
which we refer to as stochastic water-filling power allocation, that avoids this
inefficient use of power.

Team LRN



Power-Allocation Strategies 55

The key assumption here is that while transmission is blind, the trans-
mitter does know the spatial fading covariance cov(H). Because spatial fading
datidics is locdly dationary, and hence varies much more dowly than the
channel itself, in many applications it is realistic for the transmitter to acquire
this knowledge. In the following, the downlink and uplink scenarios are
studied separately. Although the direction of transmission does not affect the
performance and applicability of both optimum and uniform power-allocation
drategies, we will show that, due to the structure of the spatial fading covari-
ance, the stochastic water-filling power alocation achieves a higher average
capacity than the uniform power allocation only in the downlink.

4.3.1 Stochastic Water-Filling in the Downlink

We study this power alocation problem using the capacity lower bound.
Let the power allocation be =, = U D .U T. Note that neither U; nor Dg can
be afunction of H. Let the QR decomposmon of the matrix product BTU be
BtU, = QpyRpy - Similar to (4-8), the capacity is lower-bounded by:

~log,[det (I + H B'Z BH )]

(4-16)
23 logy(1+D(k, k)|Rgk, )| %R, (K, K)[?).

The RHS of the inequality (4-16) is the sum of the capacities of n SISO sub-
channels with power gains |Rg (%, k)|2|R (k, k)]2 1 <k<n. Comparing
equations (4-8) and (4-16), when the CSl' is not available to the transmitter,
there is a penalty due to the mismatch of the transmit basis with the channel.
Because R, is unknown to the transmitter, instead of directly maximizing the
RHS of (4-16), the transmitter chooses Ugand D, to optimize achosen statis-
tical property of the RHS of (4-16). The optima choice of power alocation
without CSI is till an open question. In the following, we describe atwo-step
approach to determine agood choice of power allocation (U, Dy).

The transmitter first chooses the transmit basis U,. Note that because
D (k, k) is decreasing in k and R, (K, k)|2 is chi-squared distributed with
degrees of freedom that are decreasing in k, to achieve the highest average
capacity one must choose Uy such that |Rp (k, k)|2 is dso decreasing in k.
Consider choosing U according to the following greedy procedure. The set of
unitary matrices that yield the highest value of |Rp,,(1, 1)| isfirstidentified.
We then find the largest subset of this set whose members yield the largest
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value of |[Rg;(2,2)|, and so on. The procedure ends when we finally obtain
the set whose member yield the largest value of |RBU(n, n)|. It can be easily
shownthat Vp belongstothisset. If U = Vg isused, |Rgyf? = DF.

In principle, once U is selected, we can calculate the corresponding Dy
that maximizes some chosen dtatistical property of channel capacity. A rea
sonable choice is to maximize the expectation of the upper-bound of the right-
hand side of equation (4-16). Recall that |R, (, k)|2 is chi-squared distrib-
uted  with  2(n — k+1)  degrees of freedom, < that
E[|R,,(k, k)|?] = n-k+ 1. Furthermore, because E(log(X)) < log (E(X))

E{ZZ _ 10g,(1 + D (k B)|Ryyy(k, K)|2|R,,(k, k)‘z)}

<\” 2 2 (4-17)
< Zk - 1log2(1 + D (k, k)|RBU(k, k)| E[|Rw(k, k)) D

= 370 _ Jogo(1 + Dy(k, b)|Rgyy(k, k)| 2(n -k + 1)).

The power alocation that maximizes the term to the right of equality in (4-17)
is again solved using the water-filling procedure. That is,

1/|Rgyk, k)|

+ n
P ) where Y D *(k,k) = p. (4-18)

k=1

DAk k) = (u-(

In summary, the transmitter chooses U, = Vp according to the greedy
criterion, and it distributes power according to (4-18). We will refer to such a
practice as stochastic water-filling. The stochastic water-filling power aloca
tion can provide capacity improvement in highly correlated fading environ-
ments. We will compare the capacity achieved by stochastic water-filling
power alocation with those achieved by optimum and uniform power alloca
tion strategies in Chapter 4.5.

4.3.2 Optimality of Uniform Power Allocation in the Uplink

Unlike the downlink direction, uniform power allocation achieves the
highest average capacity in the uplink direction.
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Lemma. For any positive semi-definite diagonal matrix Dg and Dy, the distri-
bution of singular values of the matrix DgH D, is identical to that of the
matrix DgH MD.M , where M is any square permutation matrix, i.e. exactly
one entry in each column and each row is equal to one and the other entries
are zero.

Proof. The lemmais evident because that the distribution of H,, is identical to
the distribution of H,,M and that the singular values of Xand XM are iden-
tical for any matrix X.

To show the optimality of uniform power allocation, we substitute
H~B'H  forHin(4-1):
C(z,) ~log,[det (I + BH £ H T(B)N]

wos o w

(4-19)
~log,[det (I + DgH, D H, D)1,

where tr(D,) <p. The god here isto prove that D * = (p/n)I achieves the
highest expected value of the RHS of (4-19). Consider a particular choice of
nonnegative diagona matrix Dy. Let DD, 1 = 1,2, ..., n!, denote the nl pos-
sibly distinct diagonal matrices whose diagonal entries are permutations of
the diagonal entries of D;. According to the lemma, using any one of the D)
in (4-19) leads to the same capacity distribution. The mean value of capacity
using Dy is upper-bounded by

E(C(D,)) = E(%ZZ’; coW))

cofc(Lst o) - (c(Es)

The inequality in (4-20) results from the concavity of the logarithm function.

(4-20)

4.4 Capacity Penalty From One-dimensional
Processing of Multi-dimensional Signals

In blind transmission systems, because the optimum transmit basis is not
known by the transmitter, the capacity-lossess decomposition of the MIMO
channel into n SISO subchannels outlined in Chapter 4.2.2 is not possible.
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Nevertheless, it is still desirable to extract individual observations of the com-
ponents of X from the recelved signal, thereby one-dimensionalizing the
inherently multi-dimensional signal-processing problem, as long as the pen-
aty in capacity is not too high. This is essentially atrade-off between receiver
complexity and required SNR. The study of this problem was pioneered by
Foschini, who showed that the capacity penalty per spatial dimension associ-
ated with the layered space-time (LST) architecture approaches zero as n
approaches infinity in an independent fading environment [26].

In this section, we focus on blind transmission systems that employ one-
dimensionalization techniques. The main god is to investigate the capacity
penalty associated with one-dimensionalization in systems that use stochastic
water-filling and uniform power-alocation dtrategies. As will be pointed out
later in this section, the study of one-dimensiondlization techniques gives
operational explanations to the capacity lower bounds (4-9) and (4-16).

441 ZF and MM SE Successive Interference Cancellation

We again sart with the relation between x and r shown in Fig. 4-1:
r.=HUgx_ +v.. (4-21)

In the following, we omit the subscript = for smplicity. To derive individual
observations of the components of x, the simplest scheme is to multiply r by
the inverse' of HU,;:

r=(HU) 'r = x+(HU) v (4-22)

Clearly, the kth component of r' — the observation of x; — is x; corrupted by
additive noise. Because the observation of x; contains no interference from
other components of x, this is referred to a zero-forcing (ZF) channel inver-
sion. Directly inverting the channel, as in (4-22), can lead to deleterious noise
enhancement. To alleviate noise enhancement, one can use successive inter-
ference cancellation (SIC) in conjunction with channel inversion. In SIC, the
receiver extracts the observations of {x!, x% ..., "} one-by-one, following
some specific order. After obtaining the observation of x",the receiver makes

1 When m> n, use the |eft pseudo-inverse of HU, instead of the inverse.
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Fig. 4-2. Diagram iliustrating ZF SIC. IC stands for
interference cancellation.

a decision onx* and cancels out the contributions of x* in r. We assume here
that the observations of x* are extracted in order of descending k. A mathe-
matical representation of combined ZF channel inversion and SIC is as fol-
lows. We denote the QR decomposition of HU; by HU, = UgfR. The
receiver first passes the received signal r through Upg to obtain an n-tupley,

y=Upr=Rx+V, (4-23)

where v' = Upv isan n-tuple whose distribution is identical to that of v. Note
that because R is upper triangular, excluding the noise component, y* is a
linear combination of x, xk+1 ... x". The contributions of x¥*1, ..., x" in
y; are canceled using SIC. Assuming that there are no errors in the cancella-
tion process, the individual observations of x* are:

£ = R(k, k)xk+v'(k) , k=1,2, ... n. (4-24)
Let the variance of x* be p¥. The signal to noise ratio of ¥ is
snry= Rk, K)|2p, - (4-25)

The block diagram of ZF SIC is shown in Fig. 4-2. Although we have chosen
to detect x* in order of descending k, by re-ordering the x* prior to detection,
our analysis is applicable to detection in any order. A prototype dual antenna-
array system utilizing ZF SIC has been demonstrated [5].
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We can also use other channel inversion criteria, such as the minimum
mean-squared error (MMSE) criterion, in conjunction with SIC. To obtain the

liner MMSE estimate of x" from r, one partitions HU, &

HU = [Hn— 1\ hn:i . Equation (4-22) can be written as

T L

xn
Let £ = (HU)Z, (HU )t . The linear least-square estimate of x” is
= p b, N(Ey+1)7'r = {ph, (S, +1)h,}x" +error,  (4-27)

and the error variancein " is

S+l
pn[]—hnT( H ") th. (4-28)
Pn

Let x denote the decision made on x”. Wethen replace HU, by H,, _,,x by
xP~1 andrby r—Xx"h, in(4-26) to (4-28) to obtain the linear least square
estimate of X"~ *. The process is repeated until al n elements of x have been

observed.

In the subsequent analysis, we assume that the receiver uses ZF SIC.

4.4.2 Downlink Analysis

The distribution of capacity is determined by the distributions of snry,
1<k<n, defined in equation (4-25). Similar to the derivations in
Chapter 4.3.1, in the downlink direction, the distribution of HU, can be easily
shown to be identical to that of Q, R, Rp, by substituting H, BT for H and
the QR decompositions of BTU, and H,,:

HUs ~ HWBTUS ~ HWQBURBU ~ HWRBU~ QwaRBU'

Substituting HU, = QR Rp,; into (4-23), notingthat U, = Q. F, we

w L
have;
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y =0, r=RRgx+Vv. (4-29)
The interference-free observation of x* is
2k = R (k k)R gk, K)xk + v(K) . (4-30)
The downlink capacity with ZF SIC is thus distributed as
C~Y0 _ logy(1 +p Ry (k, K2R, (K K)]2). (4-31)

By comparing (4-31) with (4-16), we can explain the capacity lower
bound in (4-16) as the capacity achieved with a suboptimal processing archi-
tecture (ZF SIC) at the receiver. The stochastic water-filling power alocation
derived in (4-18) can be employed here to achieve a capacity higher than uni-
form power allocation.

4.4.3 Uplink Analysis

Similar to the above analysis, we substitute H by B'H,, in (4-21) to
obtain the distributions of s»r;, for the uplink. Because U; does not affect the
distribution of HU,~B'H U, = B'H,,, U can be simply chosen as the
identity matrix. Equation (4-21) becomes

r=BHx+v. (4-32)

To highlight the differences between the distributions of snryin the uplink and
downlink, we will use a different mathematical representation of SIC. Substi-
tuting H,, = @R, into (4-32) and then premultiplying by (B'Qw)—1 on
both sides of (4-32), we get

y=(BQ,)'r=Rx+u, (4-33)

where u is an additive white Gaussian noise vector with covariance
= QWT(B*B')*IQW. The autocovariance matrix X, is random and is inde-
pendent of R,. Because Z,is, in genera, not diagonal, the components of
noise u are, in general, not independent. Equation (4-33) can be written com-
ponent-wise as
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¥k = R (k, k)x* + {interference from xk+1, .. x"} + uk,
k=1,2,..,n (4-34)

When the recelver makes the decision on x*. it also obtains an estimate on the
additive noise uk: uk = yk Z:' kR (k, x'. Assuming that the noise deci-
sions are all correct ie., ul ="u"for 1 = k, ..., n, these decisions can be
used to form a minimum mean square estimate of «X =1, which is simply the
conditional expectation of uk=1 given u¥, ..., u" because uk-1, ..., u" are
jointly Gaussian. In other words, in this formulation, besides canceling the
interference term in (4-34), SIC dso removes the predicted noise component.
The interference-free observation of x; provided by SIC isthus

2k = R (k, k)xk + (uk - EQuklak+1, . u™),k=1,2,..,n.  (4-35)

The signal power inz* is R, (%, k)'zpk To obtain the noise variance, we
partition T,,:

L, = Eu(k, k) a, |- (4-36)
a,’ Z{j*l

The variance of noisein z; is
of = Z,(k k)—a (Zk+ 1) lg, T, 4-37)

which isafunction of Q,, and thus is itself a random variable.

The difference in the uplink and downlink is apparent when (4-30) and (4-
35) are compared. The distributions of the signal power galn R, (K, k)|2 are
the same. In the downlink, the noise power E[|v'(k)|?] is aconstant. In con-
tradt, in the uplink, the noise power as formulated in (4-35) is random and can
be much larger than its counterpart in the downlink. Furthermore, the variance
of the noise power can be much higher than the variance of the signal power
gain |R,,(k, k)|?. (Note that 7 isindependent of R,,)

For example, under the correlated fading profile used in Chapter 4.5, with
n = 16, in the downlink the standard deviation of snr; is the standard deviation
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of |R,,(k, k)|? ,which is 1.26 dB for k = 5. In the uplink, the standard devia-

tion of snry is the standard deviation of |R (%, k)|2/c,% , Whichis 7.2 dB for k
= 5. The high variability of snr, have a profound implication on the system

design. The channel codes applied on {xf } must be designed to sustain a
good performance even when the channel realization is adverse, which has a
much higher probability in the uplink due to the higher variance of snr;.One
solution is to employ channel codes on the sequences {x{*mod ) +1} rather

than on {x¥} [26].

4.5 Capacity Results

In this section, we present the channel capacities and their respective
lower bounds for two extreme fading correlation situations. In the first, that of
independent fading, al the components of H are i.i.d. In the second, that of
strongly correlated fading, we use the following parameters in the “one-ring”
model. We assume that linear antenna arrays are used, with a transmitting
antenna spacing of two wavelengths. The angle of arrival is 0°, and the angle
spread is 0.6°.

For each configuration, 10,000 independent random channel realizations
are generated to obtain the histograms of the investigated quantity. Specifi-
caly, for the correlated fading scenario, we first obtain B using the scatterer
model parameters specified above. The channel samples are then generated by
multiplying independent, randomly generated H,, by Bt . We use the Monte-
Carlo approach here because closed-from expressions for the distributions of
channel capacity are very difficult to derive.

An important performance measure for adual antenna-array system oper-
ating in this burst mode is the capacity a a given outage probability g,
denoted as C,. In other words, the probability that the channel capacity of a
randomly chosen H is lower than C, is g. In this chapter, comparisons among
different schemes will be presented, when possible, based on the capacity at
ten-percent outage, Cy ;- We will sometimes use the average capeacity as acri-
terion for comparison.

In Fig. 4-3, we plot Cp; vs. n & SNR = p =18 dB, while in Fig. 4-4, we
plot Cp.; vs. SNR for n= 16. From these two figures, we can observe the fol-
lowing:
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Fig. 4-3. Capacity of dual antenna-array systems as a
function of n. Here, SNR is 18 dB. (a) The following
parameters are used in the “one-ring” model for the fading
covariance: transmitting antenna spacing is two wavelengths
long; the angle of arrival is 0° (broadside); and the angle
spread is 0.6°.

1. It has been established that asymptoticaly the average capacity per
spatial dimension converge to a constant depending only on SNR [9], [26].
From Fig. 4-3, we see that with independent fading, the relationship between
Cyp 1 and n is approximately linear even when n is small.

2. Fading correlation can significantly reduce Cy ;. This can be explained
using (4-9) by noting that in this settingwhen n > 4 the largest singular value
of Dg is more than 20dB higher than the fourth largest one. Thus in the
capacity lower bound (4-9), the transmit power allocated to the kth sub-
channel for k>4 is not effective in conveying information.

3. The difference between capacities with optimum power allocation and
with uniform power alocation is significant only when the fading correlation
is high. This implies that the additional complexity of optimum power alloca-
tion over uniform power alocation isjustified only if the fades are strongly
correlated.

Team LRN



Power-Allocation Strategies 65

In Fig. 4-5, we compare channel capacities and their corresponding lower
bounds computed using (4-9). The lower bound is seen to be reasonably close
to the capacity throughout the SNR range that we consider, in both indepen-
dent and correlated fading environments. In particular, when the fades are
highly correlated, with uniform power allocation the Cy; curve and its lower
bound are very close.

In Fig. 4-6, we aso plot the capacity lower bounds (the dashed curves).
They represent the capacities achieved with aZF SC receiver using uniform
and stochastic water-filling power allocation assuming that U = Vg is chosen.
The gap between the dashed curve and the corresponding solid curve indi-
cates the capacity penalty due to one-dimensionalization. The penalty is not
significant for the range of parameters that we consider.

4.6 Summary

In this chapter, we studied three power-allocation strategies for dual
antenna-array systems, using primarily the information-theoretic capacity as

80 T T T

70 +

60 | .
— —— optimum
£ 50 power
B allocation
S 40 r ----- uniform
= power
s 30 allocation
O

20 |

10 | L ,

~~-" _.---"correlated fading
0 T L L 1 !
-15-10 -5 0 5 10 15 20 25

SNR (dB)

Fig. 4-4. Comparison between the capacities achieved by
optimum power allocation and uniform power allocation when
n=16.
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Fig. 4-5. Capacity of dual antenna-array systems using
optimum and uniform power allocations, and their respective
lower bounds.

the performance criterion. Specifically, we focused on the performance of
dua antenna-array systems in environments where the fades are highly corre-
lated. In general, with medium-to-high SNR, the higher the fading correlation,
the lower the capacity.

When the transmitter knows the instantaneous channel realization,
optimum power alocation, which achieves the highest capacity throughput
that the particular channel realization supports, can be used. Optimum power
alocation refers to the use of a particular transmit basis and a power distribu-
tion that is computed using the water-filling algorithm.

Although uniform power allocation does not achieve a capacity as high as
optimum power allocation, it offers many practica advantages. One major
advantage is that the capacity is not dependent on the choice of transmit basis,
making uniform power allocation suitable for blind transmission systems.
Furthermore, when the fades are i.i.d., the difference between the capacities
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Fig. 4-6. Capacity achieved by using stochastic water-filling
power allocation strategy. The capacity achieved using
uniform and optimum power allocation strategies are plotted
for comparison purposes. The lower bound curves 1b and 2b
also represent the channel capacities achieved when ZF SIC
is employed in the receiver with the corresponding power
allocation strategies.

achieved by optimum and uniform power alocations is small. However, when
the fades are correlated, the difference can be large.

We have demonstrated a nonuniform power alocation that achieves a
capacity close to that achieved by optimum power allocation in the downlink
when the fading correlation is high. This power alocation is caculated viathe
stochastic water-filling procedure, which requires the transmitter to know
only the fading statistics, not the instantaneous channel redization. Our con-
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clusion is that on the downlink a blind transmisson system can employ uni-
form power alocation when fading correlation is low and stochastic water-
filling power alocation when fading correlation is high, and can thereby
obtain performance close to the optimum power alocation. On the uplink,
however, uniform power allocation achieves the highest average capacity for
blind transmission systems.

We aso extended our analysis to systems that employ techniques such as
SIC to reduce the receiver complexity. The key idea is to one-dimensionalize
the inherently multi-dimensional signal processing task. Our result shows that

the capacity penalty incurred by using ZF SIC is small over the range of phys-
ical parameters and power-allocation strategies that we considered.
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L ayered Space-Time Codes,
Anayss and Design Criteria

5.1 Introduction

In the previous two chapters, we focus on unveiling the potential of dual
antenna-array systems. We have shown that asymptoticaly if the fades are
independent and if n < m , the average channel capacity of an (n, m) channdl is
o(n).

In practice, channel codes are necessary to provide a throughput that is
close to capacity with a reasonable error probability. Because the transmitter
has multiple transmit antennas, the channel codes to be employed also has
multiple spatial dimension. Thus, these channel codes are referred to as space-
time codes. In this chapter, we are interested in space-time codes whose
throughput is proportional to n, assuming that »n <m. In other words, when
such a space-time code is used in an (n, m) system, the bit-rate of the system
scdes linearly in n. This assumption on bit rate will be made implicitly
throughout this chapter. We will not consider the class of space-time codes
that maintain a throughput independent of n; eg., [31] - [33], and the smart-
greedy codes [34]. The god of these codes is to leverage the transmit diversity
to reduce the required SNR.

An important consideration for space-time codes is the decoding com-
plexity. In many applications, the number of antennas can indeed be very
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large. Assume, for simplicity, that n = m. Congder a family of nontrivia
pace-time codes whose throughput is proportiond to n. Aswill be shown in
Chapter 5.2, the complexity of decoding such a space-time code according to
amaximum-likelihood (ML) criterionis generdly exponentid inn. When n is
large, space-time codes that admit low complexity (suboptimal) decoding
agorithm are very desirable.

In this chapter, we propose a class of space-time codes whose throughput
and decoding complexity scae linearly and quadratically with n, respectively.
Such a space-time code is constructed based on the layered space-time (LST)
architecture proposed by Foschini in [26]; therefore, we refer to this class of
space-time code as an LST code. There are two types of LST architectures:
horizontally layered space-time architecture (HLST) and diagonaly layered
gpace-time architecture (DLST). In addition to low decoding complexity, LST
codes offer the advantage of utilizing the established 1-D codec technology.
The use of a suboptimal decoding scheme, however, does incur a power pen-
aty compared to ML decoding. To date, studies on LST codes have focused
on the information-theoretic considerations. Another class of codes that has
been proposed as low-complexity space-time codes is the class of codes that
admit multistage decoding [34] [35].

In this chapter, we first analyze the error performance of LST codes. We
consider both dow and fast fading environments, as well as both high and low
SN\R regimes. We derive the key parameters that dominate the error perfor-
mance, and propose design criteriafor LST codes. From the error analysis, we
find that DLST outperforms HLST in dow fading environments. For DLST
codes, the optimum trade-off among several design parameters is presented.
We dso quantify the power penalty incurred by LST decoding compared to
ML decoding.

We then examine the operational aspects of DLST codes, specificaly the
use of block codes and convolutional codes as the constituent codes for DLST
codes. With convolutiona constituent codes, we will show that the original
DLST architecture does not lead to satisfactory performance. We propose the
single-stream structure as the solution. For block constituent codes, we show
that permuting the order of symbols in a block codeword results in dramatic
differences in performance. Therefore, the optimum permuting order should
be employed. The error analysis and design criteria for these modified LST
codes are provided. These solutions achieve greatly improved performance.
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The remainder of this chapter is organized as follows. In Chapter 5.2, the
notation of space-time codes is introduced. We aso provide the error proba
bility analysis for ML decoding. In Chapter 5.3, we introduce the LST archi-
tecture, in particular the HLST and DLST architectures. The decoding
complexity of LST codes is shown to be quadratic in n. In Chapter 5.4, we
analyze the performance of LST codes. We demonstrate that DLST is superior
to HLST, especidly in dow fading environments. The design criteria,
optimum design choices, and penalties associated with the suboptimal
decoding mechanism are presented. In Chapter 5.5, we examine the opera-
tional aspects of DLST codes, and propose the modified structures to achieve
improved performance. We aso present example DLST codes. We give con-
cluding remarks in Chapter 5.6.

5.2 Space-Time Codes

5.2.1 Notation

Consider the encoding process first. The encoder at the transmitter applies
the channel code to the input information bits to generate an n-row (possibly
semi-infinite) matrix C. Thekthrow, tth column element of C, denoted by c¥,
represents the signal to be transmitted by antenna k at time dot 1. Such a
channel code differs from conventional channel codes in that it involves mul-
tiple transmit spatial dimensions. To emphasize this distinction, it is referred
to as a space-time code.

At the recaiver, during the time dot 7, the receiving antenna | receives a
signal r! . This received signal ! contains a superposition of transmitted sig-
nals cf, k=0,1,...,n-1, and an AWGN component vé. For a narrow-
band flat-fading channel, the gain connecting transmitting antenna k and
receiving antennal a time t can be denoted by a complex number AL k. We
define  the vedors ¢, = (c) c2..chy, ro= (rl 2. emy,
v, = (vT1 vf ...vI")'. The discrete-time, input-output relation of the (n, m)
dua antenna-array system over a narrowband flat-fading channel can be
written in the following vector notation:

r. = H‘rc‘r+vr' G-
Inthis chapter, we will alwaysassumethat n<m.
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The following terminology is used in this chapter. The matrix C, which is
the coded matrix output of the transmitter encoder, is referred to as a space-
time codeword matrix. A space-time codeword matrix can be thought of as a
serid concatenation of n-tuples, and an n-tuple is composed of n symbols.
Note that the first row of the matrix C is indexed as row zero, not row one.

To facilitate the comparison between dua antenna-array systems using
space-time codes and single transmit-antenna systems using conventional 1-D
channel codes a equal average transmit powers (tota over al transmit
antennas), the average energy of an n-tuple is E, regardless of the spatial
dimensionality n.

5.2.2 Space-Time Codes with ML Decoding: Performance and
Complexity

ML decoding is optimum in terms of achieving the lowest error proba-
bility. In the following, expressions for the error probability of a space-time
code with ML decoding are given. These will be used as a reference to quan-
tify the performance of other decoding mechanisms. The error probability
with ML decoding has been derived independently by Tarokh et. d. [34] [39]
and Guey et. a [36]. The special case when n= 1 was derived even earlier by
Divsdar and Simon [37] [38]. Our matrix notation leads to an elegant deriva:
tion; see Appendix .

Let C and E be two distinct space-time codeword matrices. Suppose that
C is the transmitted space-time codeword matrix. The average pairwise error
probability between codewords C and E, denoted by Prob(C — E), isthe
average probability that the likelihood of received signa given E is higher
than that of the received signal given C. Here, the average is taken over
random redlizations of H. In a fast fading environment, Prob(C — E) is
upper-bounded by

Prob(C—E)sTT-_ 1(1 + |c1—e1|2a%ﬂ)"". (5-2)
In adow fading environment, Prob(C — E) is upper-bounded by

Prob(C —» E) < HZ“_’";(C ‘E)( 1+ Akét—fl() - (5-3)
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where A; are the eigenvalues of the matrix (€ — E)(C - E)T.

Although ML decoding achieves the lowest error probability, the com-
plexity of implementing ML decoding may be a concern. Consider space-time
codes that encode an + o(n) bits per n-tuple, where a is a positive constant.
The complexity of ML decoding is generally exponentia in n. To see this,
consider the log likelihood of receiving y, when an n-tuple ¢, is transmitted.
The log likelihood is an affine function of I’r“HCrlz' For a non-trivial H,
r.- Hc42 cannot be further reduced; thus an exhaustive search among the
2an+o(n) nosshle choices of ¢, is required. It is mainly the high complexity
of conventional ML decoding that motivates the study of space-time codes
whose structure alows for efficient ML decoding or low complexity subop-
timal decoding that does not incur a significant degradation in error perfor-
mance.

5.3 Layered Space-Time Architecture

In this section, we present a brief summary of the layered space-time
(LST) architecture [26].

5.3.1 Encoding

In the LST architecture, the multi-spatial dimensional signal is obtained
by spatiadly multiplexing 1-D signals, or more generaly space-time signals
with a spatid dimension | such that | divides n, in a systematic fashion with
the goa of reducing the receiver complexity.

The encoding process is illustrated in Fig. 5-1. The first step is to generate
the 1-D signals. In Fig. 5-1(a), the input information bit sequence is first
demultiplexed into n subsequences, and each subsequence is subsequently
encoded by a 1-D encoder. These 1-D channel codes are referred to as the
constituent codes. The output of the constituent coder k is a sequence of sym-
bOlsz, t=0,1,....

The second step is to designate when, and from which antenna, a coded
symbol, say sf, is to be transmitted. One intuitive assignment rule is to
always transmit the output coded symbol from constituent encoder k using the
transmit antenna k. This is illustrated in Fig. 5-1(b). Under this assignment
rule, the space-time codeword has an obvious horizontally layered structure. It
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Information
bits

— to antenna 1

— to antenna 2

(c) DLST

Fig. 5-1. Encoding of LST codes. Here, n = 3. Each square
represents a symbol. (a) The incoming information bit
sequence is first demultiplexed into n subsequences. Each
subsequence is encoded using a constituent code. (b) In
HLST, the coded symbols from constituent encoder k are
transmitted by antenna k. (c) In DLST, the coded symbols
from a constituent encoder are transmitted by the n
transmitting antennas in turn.

is caled the horizontally layered space-time (HLST) architecture. HLST was
originally proposed by Foschini in [26]. Another assignment rule, aso pro-
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posed in [26], is the diagonaly layered space-time (DLST) architecture. In
DLST, ingead of always feeding the output symbols from a constituent coder
to aparticular transmit antenna, they are fed to the n transmitting antennasin
turn. The practice of rotating the roles of antennas is caled cycling. DLST is
illustrated in Fig. 5-1(c).

If a coded symbol sis to be transmitted at time t from antennak, in our
notation it is equivaent to assigning the (, t)th component of the transmitted
space-time codeword matrix C to be s. An informal way of saying thisis that
the symbol s is used to fill the (k, t)th dot of C. In HLST, the output of the
constituent coder k is used to fill the kth row of the codeword matrix C, i.e,
Ck = sk. In DLST, the outputs of the constituent coders are used to fill the
NW-SE diagonals of C from left to right in turn. Specifically, the output of the
constituent coder k fillsthe (k+I - n) th diagonas of C, where | = 1, 2,....

5.3.2 Decoding

At the recelver, the recelved signa is a superposition of transmitted coded
symbols scaed by the channel gain and corrupted by AWGN. Instead of
decoding the n congtituent codes jointly, in the LST architecture, interference
suppression and interference cancellation are employed o that the congtituent
codes can be decoded individually.

Consider the processing along the spatid dimension first. Let us focus on
agiven instance in time, say t. The transmitted n-tuple is ¢, and the received
mtupleis . = H.c_+v_. Thegod hereisto determine the values of the n
components of e, i.e. €0, ¢l ..., e#~1, with the only availableinformation
beingr. and H,. In the LST architecture, the decisions on the values of these n
components are made sequentially according to a pre-determined order.
Without loss of generality, in this chapter we assume that the decision order is
in descending order of the superscript of c

Thesymbol c?~! isthefirst oneto bedecrded To decide the value of the
symbol ¢7~1  a decision variable, denoted by z7-1, is extracted from the
received srgnal r.. This decision variable z7* ~ ! should contain a low level of
interference from other symbols ¢” -2, ¢~ 3, 9. Hence, this operation
is often referred toaernterferencesuppron The decrsron onct- I' jsthen
made. Making use of the decision on c¢?~ 1, the receiver can modrfy the
received signal .. by removing the contribLt on of ¢f- I toit. Thismodifying
operation is referred to as interference cancellation. The process of extracting

Team LRN



76 Chapter 5

Encoder y

Encoder B

Encoder o

|i_ =

Fig. 5-2. A DLST codeword matrix C. Here, n= 3.

a decision variable, making a decison on the value, and modifying the
received signal is repested for the remaining symbols c¢# -2, ¢#-3, ..., ¢2.

The decoding algorithm in the LST architecture utilizes the spatia pro-
cessing described above and exploits the tempora redundancy of the constit-
uent codes to provide reliable decisions. To decode an HLST code, the
receiver first extracts the decison variables for the symbals of the bottommost
row of C. The resulting decision variable sequence, {z;"1 Lbt=0,1,...,is
used by aconventional 1-D decoder of the corresponding constituent code to
produce the decisions on the symbols of this row. The receiver then uses the
decision to modify the received signal sequence {r.}, and then proceeds to
decode row n—2, n— 3, and so on. In short, the HLST codeword matrix C is
decoded row by row, or layer by layer, from bottom to top.

A DLST code is dso decoded layer by layer. The difference is that the
layer is oriented diagonally rather than horizontally. Consider a DLST code-
word matrix C, as shown in Fig. 5-2. The entries of C below the first NW-SE
diagonal are zero. The entries on the first diagona are thus the undetected
symbols of the highest row numbers in their respective columns. To decode
the DLST code, the receiver first generates a decision variable for each of the
entries on the first diagonal. These decision variables are used by a corre-
sponding 1-D decoder to decode this diagonal. The decision is then fed back
to remove the contribution of these symbols to the received signal. The
receiver then continues to decode the next diagona.
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Suppose that the rate of the constituent code is fixed, regardiess of the
number of antennas. The HLST codes and DLST codes obvioudly offer an
overdl data rate proportional to n. The decoding complexity of LST codes
includes two contributions. The complexity of the spatial processing is on the
order of O(n? + nm) operations per transmitted n-tuple if linear operations,
such as those described in the next section, are employed. The complexity of
decoding the n constituent codes can be estimated to be n times the com-
plexity of decoding atypical constituent code. Clearly LST decoding requires
much less complexity than ML decoding.

5.4 Error-Probability Analysis For Layered Space-
Time Codes

5.4.1 Expressions for the Decision Variables

In the previous section, we have shown that the LST decoding consists of
three steps: interference suppression, constituent code decoding, and interfer-
ence cancellation. There are many schemes that can be used for interference
suppression. The choice of interference suppression scheme will affect the
decoding performance. In this chapter, we focus on linear zero-forcing (ZF)
interference suppression because it leads to atractable analysis. At high SNR
and large n, the performance with linear ZF interference suppression is very
close to that with linear MM SE interference suppression [39)].

The mathematical formulation of linear zero-forcing (ZF) interference
suppression is as follows. We focus on a given instance of time, and we drop
the time index for smplicity. Let the QR decomposition of the channel H be
H = UR, where U isaunitary matrix and Ris an upper triangular matrix. We
left-multiply the received signd r by Ut to obtain an m-tupley,

y=Ur =Rc+v, (5-4)

wherev' = Uty isan mtupleof i.i.d. N(O, Ny) noisecomponents. Because
Ris upper triangular, for any given row numberk, k=0, 1,...,n—1,

yk = REck + {alinear combination of ck*+1,ck+2, . "1} + vk (5-5)

The interference term in (5-5) is independent of ¢9, ¢!, ..., ck-1. That is, the
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interference from these symbols is suppressed. We can remove the interfer-
ence termin yk to obtain the decision variable Zfor cfus ng the decisions on
ck+1 ck+2 " cn=1 Assuming that these decisions are dl correct, 2X is

k= Rkck+vk k=0,1,..,n-1 (5-6)

The power gain [R,’g'z is a quantity that depends on the random channel real-
ization. It has been shown that, if the channel matrix H has i.i.d. circularly
symmetric complex Gaussian entries, |R’,§|2, k=0,1, ..., n-1, aeindepen-
dently chi-squared distributed with 2(m — k) degrees of freedom [28]. Thisis
an important result that will be used repeatedly in our analysis.

The relationship between Fand ZKin (5-6) can be interpreted as the input-
output relation of a SISO channel with power gain [R{? and AWGN.
Because the gains |RK? are independently chi-squared distributed with
2(m — K) degrees of freedom, one can interpret (5-6) as the transmission of a
symbal & over a(1, m — K) receive diversity system to form the decision vari-
able 2 with the use of maximal-ratio combini ng [40]. Thisimplies an intuitive
interpretation that, assuming there are no errors in the feedback of symbol
decisions, the kth row of an LST codeword matrix is transmitted over a
(1, m — k) system without interference from the other rows of the codeword
matrix, and al fades arei.i.d.

5.4.2 Performance of HLST Codes

Consider the kth row of an HLST codeword C. Let {cic } denote the actua
transmitted symbol sequence on this row, and { e } denote a distinct possible
transmitted symbol sequence. Conditioned on the channel redlization H, =
{Hy, Hy, ...}, the probability that the likelihood of transmitting {ef} is
higher than { cX } is

Prob(ck—>ek|H,) = Q(J;%)Z‘(Rf)rl2|05—€f’2)

(5-7)
< exp{—ZEN—OZI(RI’g)THCf ~ efl-’-},
T

where the matrix R, comes from the QR decompostion of H, i.e,
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H_ = U R_.Thisisthe conditiona pairwise error probability between {ck }
and {ek } The average pairwise error probability can thus be upper- bounded
by taklng the expected value of the right Sde of (5-7) over the distribution of
l(Rk) ,2, which is a chi-squared distribution Wlth 2(m — k) degrees of
reedom. In afast fading environment, the (Rk) are i.i.d. for distinct T.
The average pairwise error probability, rob(c — eX), can be upper
bounded by:

k_y ok E | pky |2k _ K2
Prob(c* —> e*) < 11 E[exp{—m—l(Rk)T’ |cT —et| }]
T & n(ck, eb) 0 (5-8)

= 11 (+]eb-ebpg) Y

where n(ck e*) = {t|ck2ek}. In a dow fading environment,
(RE)|? = |RY? fordl s, and Prob(ck — k) can be upper bounded by:

k_y ok E |pi2] k_ k2)"m=5)
Prob(c* —> e )sE(l +4—N(-)|Rkl ;,cr—erl )

= (1 +HEV(—)|c—e|2)_(m_k)

(5-9)

5.4.3 Performance of DLST Codes

DLST codes are decoded diagonal by diagona. Here we consider the
probability of adiagona decision error. Consider the first diagonal of aDLST
codeword. On this diagonal, the transmitted symbols ae c7,
1 =0,1,...,a-1. The probability that, under the DLST decoding ago-
rithm, the I|keI|hood of a distinct diagonal e = {e0 e . } is higher
than that of the transmitted diagonal ¢ = {c§ ¢f ... c” 1 } condltloned on

the channel redlization H, = {Hy, Hy, ...}, is
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Prob(c —e|H) = 0 |-£ v L -1 1(R) [2e; - ei?)

<o g kD et -

Equatlon (5-10) applies in both fast and slow fading environments because the
|(RT)| aeiid fort=0,1,..,n-1.

The upper bound of the average parwise error probability is again
obtained by taking the expected value of the right-hand side of (5-10). When
the SNR is high,

(5-10)

Prob(c »ey< T (1+ei- e;|2I’13—())'(m”)

T en(ee)
_ _ (5-11)
T
z{ H (]CT-—eT|2) —(m- ‘r)}( EO) reﬁ‘:(“c,,)m
T en(c,e) 4N,

where  n(c,e) = {t|cf#ef}. When the SNR is low, ie
|cT - €T 2(E/(4Ny)) « 1 for dl 1, because (1 +mx)~! » (1 +x)~ for small
product mx, (5-10) can be approximated by

E \e-{|ci - ef|2(m - 1)}
Prob(c — ) < {1+a——0) ] i
16111_(Ic,e) ( 4N,

—{ > lcg—e:lz(m—'t)}
t € n(ce)

ey

where € is an arbitrarily small positive number. In Appendix Il & the end of
this chapter, we provide an exact calculation of the average pairwise error
probability. A new definition of Q-function is used so that bounding the con-
ditional error probability with the Chernoff bound Q(x) < exp(-x2/2) isnot
necessary.

(5-12)
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5.4.4 Performance Comparison: DLST vs. HLST

When the performance of HLST and DLST in adow fading environment
are compared, we identify the major shortcoming of the HLST architecture.
Let us compare (5-9) and (5-11) in the high SNR regime. For an HLST code,
the average pairwise error probability of the bottommost row is inversely pro-
portional to the (m —n + I)th power of SNR. In contrast, in DLST, the
average pairwise diagonal error probability between two diagonals ¢ and e is
inversely proportional to the (3" — 1 )th power of SNR. Therefore,
if congtituent codes of equwalent d{%oughput and complexity are deployed,
the error probability of a DLST code in a dow fading environment can be
much lower than that of an HLST code.

The difference between the performance of DLST and HLST can be
explained in an intuitive fashion. We have shown that, under the LST architec-
ture, the rows of a codeword matrix can be thought of as being individually
transmitted over (1, m- k) diversity reception systems with independent
fading. For an HLST code, the output from a constituent code occupies a par-
ticular row, thus only uses one of these virtual diversity reception systems.
The constituent code transmitted using the bottommost row experiences only
(m—=n+ 1) receive diversity and could become the performance bottleneck.
On the other hand, in the DLST architecture, the output from a constituent
code is transmitted over the n virtual diversity reception systems in turn.
Because the fades associated with these virtual systems are independent, uti-
lizing these systems in turn provides another form of diversity.

Another advantage of DLST over HLST is that in DLST the constituent
codes can be just the same code. By contrast, in HLST, because the orders of
receive diversity experienced by different constituent codes are different, to
efficiently utilize the benefit of receive diversity, lower-rate codes must be
used for the lower rows and higher rate codes for the upper rows. In light of
these advantages, thereafter in this chapter we will only consider DLST codes.

5.4.5 DLST Codes. Design Criteria and Trade-offs

We propose the following design criteria for DLST codes, making use of
equations (5-11) and (5-12).

* We define the truncated multi-dimensional effective length (TMEL) and
the truncated multi-dimensional product distance (TMPD) between two
distinct diagonalsc and e as
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TMEL= Y m-t and TMPD= T[] [ci-ef?(m-D). (5-13)
T € v(c, e) Tenfc,e)

At high SNR, the pairwise error probability between ¢ and e is approximated
by Prob(c — e)~(TMPD)~1(E/4N;)"TEL  The code design criterion is
to maximize the minimum value of (TMPD)~!(E/4N;)"™EL over dl pairs
of distinct diagonals. If the exact operating SNR is not known but can be
assumed to be reasonably high, a good design criterion is to maximize the
minimum two-tuple (TMEL, TMPD) in dictionary order.

* Atlow SNR, the pairwise error probability is approximated by (5-12). We
define the exponent Jct—etlz(m—‘c) to be the truncated
multi-dimensional weighted B&efidean distance (TMED) between ¢ and e.
The code design criterion a low SNR is to maximize the minimum
TMED between any pair of distinct diagonals.

In the paragraphs above, the word truncated is employed to make explicit
one important limitation of DLST codes. To decode a DLST code diagona by
diagonal, the output symbol sequence of a constituent code is decoded block
by block. It is desirable to have the number of symbols contained in a diagona
large. To achieve this, one can employ diagonals that are multiple symbol in
width. This isillustrated in Fig. 5-3. With a diagond width of W symbols, a
diagonal can contain nW symbols. If W= 1, the expressions in (5-10) - (5
12) and the design criteria above must be modified accordingly. An important
issue is that the use of wider diagonals does not necessary guarantee better
performance. One must optimize the congtituent code for each value of W.

At high SNR, the pairwise error probability between ¢ and e is approxi-
mately inversely proportional to (E/4N,)~TEL = The highest achievable
TMEL is Z::l m-t = (2m+1-n)n/2.Usudly this highest achievable
TMEL is quite Parge, and it sometimes is desirable to employ a lower min-
imum TMEL to alow for higher throughput. The code design trade-off among

Fig. 5-3. DLST with a diagonal width of two symbols.
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the constellation size, diagona width, datarate and TMEL isasfollows. Sup-
pose that the symbol constellation sizeis 22 and the diagonal widthis W. We
claim that, in dow fading environments, it is possble to find a constituent
code of data rate R bits/'symbol so that the minimum TMEL is a lesst X:

_ log,{Aw(n, D)}
- nW

, (5-14)

where A Low(n, D) is the maximum size of a code length n and minimum
Hammlng distance D defined over an aphabet of size 2°%, and D is defined

by
ZD m-n+12x. (5-15)

T=1

Proof. Denote the symbol constellation by Q. Consider an nW-symbol vector,
sy ¢™=[cycq ... cuw 1], Whose components (symbols) are defined over Q.
Consder amapping £ Q"% — (@W)* that maps ¢™ into a length n vector
(") whose components are defined over @%; ™" = [(c0 Cp e Cp_y)
(Cw Cyyyy - Cow1) o LCG 1w Cn-tyWe1 - Saw—1) 1 The rela
tionship between ¢™ and (c y*'is one-to-one and onto. Lef CB denote a set
(codebook) of length-n vectors defined over Q Accordlng to the input mes-
sge, the constltuent coder chooses a vector (¢%)" from CB, and then applies
f-on (¢")*to obtain ¢™ and hence the nW symbols to fill a diagonal of
WldthW

If the minimum Hamming distance of CB is D, clearly the minimum
TMEL of the DLST code is a least
(m-n+1)+(m-n+2)+...+(m- n+D)-ZD m-n+t. Thee
fore, it is possble to flnd a condituent " Sdde with data rate
R = log,{A,,w(n, D)} /nW such that the minimum TMEL is a least
Z? _m-n+rt. |

It is important to know the performance degradation incurred by LST
decoding when compared to ML decoding. Consider two DLST codeword
matrices C and E. Denote the first diagonas of C and E by ¢ and e, respec-
tively. Further assumethat ¢ # e andthat thisisthe only difference between C
and E. For amplicity, we only condder W= 1 The average probability of
decoding C as E using ML decoding is given by (5-3), which is equivaent to
(5-2) in this specid case. The corresponding probability for LST decoding is
given by (5-11). Hence:
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E -m
2-ML
Prob(C —> E)< H (1 +|ct—e1 Wj
T € n(c,e) 0

for ML decoding and (5-16)

E - Z m-1
Prob(C > E) < { H (ICt _ erl2)—(m - t)}(_fjc_ﬂj Tenle,e)
T e n(c,e) 0

for DLST decoding. 5-17

It is reasonable to estimate the power penaty by assuming that the (c, €)
diagond pair yields the minimum TMEL. Suppose that the performance
requirement is that the average pairwise error probability must not exceed
10~%. By setting the RHS of both (5-16) and (5-17) to be 10~*, the power
penalty can be estimated to be a(1 - TMEL/m[n(c, e)|) dB.

For example, let us consder a DLST code that achieves the highest
achievable TMEL. If m = n, TMEL/m|n(c, )l = 1/2.To achieve amax-
imum average pairwise error probability of 10°, the estimated power penalty
is 3 dB. On the other hand, if m » n, TMEL/m|n(c,e)| = 1/2. In this case,
the power pendlty is negligible.

5.5 Operational Aspects of LST Codes

5.5.1 Convolutional Codes as the Constituent Codes

The originad DLST architecture does not lend itself to viable implementa-
tion using convolutional codes as the congtituent codes. Under the DLST
architecture, to supply the symbol decisions necessary for interference cancel-
lation, the receiver must determine the values of the symbols of a DLST code-
word in a diagona by diagonal fashion. A diagond contains a block of nW
symbols, and this block is a section of the output symbol sequence of the cor-
responding constituent (1-D) Convolutional code. Diagonal -by-diagonal oper-
ation thus means that the output symbol sequence of the constituent code is
first partitioned into sections of nW symbols, and each section is decoded
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without any observations of the subseguent sections. Such atruncation results
in poor decoding performance. We can visualize this problem in Fig. 5-2. The
symbols oy, o3, and a, must be determined before observing symbols a3, oy,
etc. Thereliability of the decison on symbol o, is particularly in doubt.

To solve this problem, we propose the single-stream structure, which is a
modification of the DLST architecture. Under the single-stream structure,
only one convolutional constituent code is used. The information bit sequence
is fed into the constituent code to generate a coded symbol sequence. The
space-time matrix codeword is obtained by filling the NW-SE diagonals of the
matrix codeword from left to right with these coded symbols, just as in the
origina DLST architecture. The single-stream structure is shown in Fig. 5-4.

We will use the following terminology in discussing the decoding proce-
dure. Note that in order to perform decision feedback and interference cancel-
lation, it is only necessary to determine the values of the symbols, not the
encoded bits behind those symbols. We refer to a decision on the value of a

Convolutional Encoder \\‘_\‘\_’

Co &3 G &
C= 001 Cqy

0 0 Co Gy

(a) Encoding

€ €3 Cg Cg - éo.cES. Cg Cg -
:> 0 C_4 Cr .. 0 61 Cq C7 ..
0 0coics - 0 0[clcs -

D = symbol whose value is to be decided
[ : ' = symbol whose decision variable is employed in making the decision
(b) Decoding
Fig. 5-4. The single stream structure. (a) Encoding. (b)

Making symbol-by-symbol tentative decision.
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symbol, which is to be used in decision feedback and interference cancella
tion, as a tentative decison. The decison depth associated with a tentative
symbol decision is defined as the number of decision variables corresponding
to the symbol to be detected and the subsequent symbols that are incorporated
in arriving at the tentative decision. The problem with using convolutional
codes as the congtituent codes in the original DLST architecture can be
rephrased by saying that there are always coded symbols whose tentative
decisons are made with excessvely low decison depths, ie, 1,2, ... sym-
bols.

The dlightly modified encoding process in the single-stream structure per-
mits the receiver to perform the task of decision variable generation, tentative
decision, and interference cancellation in a symbol-by-symbol manner instead
of in a diagonal-by-diagona manner. It isillustrated in Fig. 5-4. The receiver
darts by generating the decison variables for symbols ¢y, ¢y, ¢5,and c3. The
tentative decision on ¢ s first made with adecision depth of 4 (symbols), and
then the tentative decision on ¢; is made with a decision depth of 3. With the
tentative decision on ¢; available, the decision variade for ¢4 can be gener-
aed before determining the value of ¢,. Now the tentative decision on ¢, can
be made with a decision depth of 3, and so on. The benefit is that the decision
depth can be a leest W(n— 1) for every tentative decison. The name “single
stream” reflects the use of only one constituent code; by comparing Fig. 5-1
and Fig. 54, it is clear that such a symbol-by-symbol decison mechanism is
not possible with multiple constituent codes.

The average error probability of tentative decisons can be derived using
techniques similar to those employed in deriving (5-10). In the following, we
assume a diagona width W= 1; the result can be easly extended to cases
where W > 1. Congder making atentative decison on asymbol inthe rthrow.
Suppose that the transmitted symbol is cg, and the subsequent (sequentially
down the diagonal) n -2 transmitted symbols ae ¢y, ..., ¢, _,. Notethat c;
is placed in a dot on the ((t + r) mod n )-th row of the space-time codeword
matrix. Let another length-(n — 1) symbol sequence that can be transmitted in
place of ¢ = {cp, €y, ..o c,_, ) bee={eg, ey, ..., ¢, _, }. The average prob-
ability that, based on the decison variables corresponding to symbols
Co» Cp» -++5 €, _ 2 » the likelihood of e is higher than that of ¢, thus resulting in
tentatively deciding eginstead of ¢, is
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Prob(cy—> ey) = E[Prob(cy—> e0|HT)]
n-2 2 E \-(m=~row/(1))
SHT=0(1+|ct—er| ‘Wo) ,

where row (1) = (1 +r) mod n. Equation (5-18) applies to both fast fading
and dow fading environments. At high SNR, equation (5-18) can be approxi-
mated as

(5-18)

Prob(cy— eg) < { I (Icr - erlz)-(m - rowr(t))} y
T e n(c,e)

Z m—row (1)

(4%() —t € n(e, e)

where n(c,e) = {t|t=0,1,...,n-2,c #e.}. At low SNR, equation (5-
18) can be approximated as.

n-2 L2 _
Prob(Coﬁeo)SIZ(l+84%J_1/£]Z’=°|Ct e mw’(T)). (5-20)

(5-19)

From (5-18) and (5-19), we propose the code design criteria for single-
stream DLST codes that minimizes the maximum average pairwise tentative
decison error probability. In the following, ¢ and e are two symbol sequences
of length n—1 symbols that can be generated from the same state of the
encoder of the constituent convolutional code. The design criterion is to
design the constituent convolutional code such that the following quantity is
maximized:

. Mmin n-2 5 E Ym-row/ (1) . .
ot e HT _ 0(1 +e e W@) (high SNR regime),

o SITimeron e, ~ef? (low SNR regime)

Error propagation is a common problem in all systems that employ deci-
sion feedback. In the LST architecture, errors can propagate both spatially and
temporally. Consider a symbol and an incorrect tentative decision on it.
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Because the incorrect decision is used in the interference cancellation process,
the decision variables of the symbols that are above this symbol on the same
column will contain error (errors propagate spatially upward). These incorrect
decision variables may further result in more erroneous tentative decisons
(errors propagate temporally).

After the tentative decisions are made, a sequence of decision variables is
generated. A decoding process is then applied over this decision variable
sequence to determine the encoded information bits, which we refer to as the
final decisions. The decoding processes for making tentative (symbol) deci-
sions and final (bit) decisions are conceptualy separate. The final decisions
can be made without being subject to the limitation that the minimum deci-
sion depth cannot exceed W(n— 1). One might argue that by using a decision
depth longer than W(n — 1), the error probability of the final decisions can be
lower than that of the tentative decisions, especially when the minimum span
of an error event of the constituent code is longer than W(n—1) symbols.
However, the exact error analysis of both the tentative and final decisions is
difficult due to the error propagation phenomenon.

We observe the impact of error propagation through Monte-Carlo simula-
tions. In the range of SNR of interest, the simulation result indicates that the
final decision error probability is aways a significant fraction of the tentative
decision error probability. Thus our design criterion that optimizes the tenta-
tive decision error probability isjustified.

Example 1. In this example, the number of antennasisn =m = 8. The con-

stituent code for the n-D single stream LST code is to be a rate-1/2 feedfor-
ward convolutiona code with aconstraint length no greater than 10. Each pair
of output bits from the constituent encoder is mapped to a symbol point on the
QPSK constellation using the Gray code mapping. The throughput of the
single-stream DLST code is 8 hits per channel use.

For W = 1, we perform an exhaustive search in the code space according
to our code design criterion in the high SNR regime. The maximum average
pairwise eror probability of the optima constituent code is

Hz;zo(l + |c,—er|zz%0)_(m_mw’(’))z219(‘%0)"” . This single-stream

DLST code is referred to as code A. The aforementioned convolutional code
is also used as the constituent code for an 8-D single stream LST code with a
diagonal width of 2 symbols (code B). The maximum average pairwise error
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. . . 2167 F \-10 .
probability of code B is approximately -3—(—0) . We did not search for

4N,
the optimum constituent code for code B due to time constraints.

We performed Monte-Carlo simulation to obtain the performance of both
code A and code B in dow fading environments. The following parameters
and terminology are used.

» Forcode A, the decision depths used for tentative decisions and final deci-
sonsare 7 and 14, respectively.

» For code B, the decision depths used for both tentative decisions and final
decisons are 14. Because there are many error events whose spans are
less than 14 symbols, a decison depth of 14 for final decisions is suffi-
cient.

* An incorrect tentetive decison that follows a long sequence of correct
tentative decisions is referred to as aleading error. As we have shown in
the paragraph above, a leading error can trigger numerous subsequent
errors. We record the error propagation statistics.

Fig. 55(@) shows the probability of occurrence of leading errors vs. SNR.
This is aso the tentative decision error probability assuming perfect decision
feedback. Specifically, alarge number of i.i.d. random channel realizations H
are generated. For each H, the average probability of leading error_Pgyy is
obtained from simulation. The average leading error probability P, is the
average of Pyy. We define outage as an event that the channel H cannot sup-
port an average error probability Pyy lower than arequired level. Thus, the
ten-percent outage leading error probability PO is the highest error proba:
bility such that 10% of the randomly generated channels have average error
probability Py exceeding PO!. As expected, code B outperforms code A
in average leading error probability when E/N,, is below 12 dB because of
its lower maximum average pairwise error probability. Code B also outper-
forms code A in the ten-percent outage leading error probability.

Fig. 5-5(b) shows the percentage of channels on which Pgy is lower than
10-2 or 103 . It showsthat, for code A and code B, with SNRs of 11 dB and
10 dB, respectively, more than 90% of the random channel realizations sup-
port an average leading error probability Pgn lower than 1073,

From simulation, we identify the channels conditioned on which the
average probability of leading error Pyy is close to the ten-percent outage
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Fig. 5-5. Simulation results of the error performance of
single-stream DLST convolutional codes in slow fading
environments. (a) Average error probability P, and ten-
percent outage probability P%! of tentative decisions
assuming perfect decision feedback. (b) Percentages of
channels H over which the conditional tentative decision error
probability P, satisfies the quality requirement assuming
perfect decision feedback.

Team LRN



Layered Space-Time Codes 91

30 L T T 1 T

8

E 25 |

w

S i

g 20 —— Code A, tentative decision
E 15 r —— Code A, final decision
Z ---- CodeB

w 10 |

g

L 51

8 N S ~ .

2 0 1 i 1 Ly

9 95 10 105 11 11.5 12
SNR (dB)

()

Fig. 5-5. Continued. (c) The median of triggered decision
errors over channels conditioned on which the average
probability of leading error P, , is close to the ten-percent
outage leading error probability PO!.

leading error probability Pg-l . Fg. 5-5(c) shows the median number of errors
that are triggered by a leading error on those channels. For code A, the
number of triggered final decision errors is lower than the number of triggered
tentative decisons errors. This can be attributed to the difference in the deci-
son depths employed. We aso observe error propagation events that last a
very long period of time, sometimes even hundreds of symbol decisons. W

55.2 Block Codes as the Constituent Codes

It is natural to use block codes as the constituent codes of a DLST code.
To fill aNW-SE diagonal of aDLST codeword matrix, ablock of information
bits is first encoded using a block code, yielding one (or severd) block code-
word(s). The block codeword(s) is (are) subsequently mapped into ablock of
Wn symbols. These Wn symbols are then used to fill adiagona of the DLST
codeword matrix.

In the following we present an andysis of the error probability. We will
assume that the diagonal width W= 1 and that exactly one block codeword is
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. coded digit
. Input to symbol
information mapping
bits permutation
[
L, block N i | fillin a DLST codeword
coder 4’{"11 = G(ay) o(.) [diagonal[ matrix
ag €o €o-1(0) ‘a 1(0)
a ¢ Co-1(1) 0 coiqy
0 0
a,_q Cn-1 Colin-1 L 0 0 © Col(n-1

Fig. 5-6. Diagram of DLST encoder using a block code as the
constituent code.

contained in adiagond; the result can be easily generalized to other cases. Let
a be ablock codeword of n components, @ = (a, a;, ..., a, _ ;). Eachcom-
ponent of a isindividually mapped to asymbol, or acongtelation point, under
a given mapping; that is, a is mapped into a vector ¢ = (cg, €, +--» € _ 1)
componentwise. These n symbals ¢, ¢y, ..., ¢, _ fill the dots of adiagonal.
Specificaly, ¢ fillsthe o(k)th row slot, where o(.) is a permutation of 0, 1, ...,
n— 1. Here, o(.) is caled the dot assignment. It is fixed and is known to both
the transmitter and the receiver. This encoding process is illustrated in Fig.
5-6. Assuming that there is no preceding decision feedback errors, the average
probability that the transmitted vector c is less likely than another vector e is
upper-bounded by:

—(m—k
Prob(c > )< TT, - 7(1+ oo ~ ool 4N0) =0 sa

in both dow and fast fading environments. Because the exponent m —k varies
with the row number k, the error probability can depend on the permutation
o(.).

Given adot assgnment o(.),the TMEL, TMPD, and TMED between two
block codewords ¢ and e are defined in Chapter 5.4(D). The des gn criteriain
Chapter 5. 4(D) are applied to calculate the maximum average pairwise error
probability given a dot assignment o(.); we then choose the o(.) that yields
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the lowest maximum average pairwise error probability. In the following, we
briefly examine the performance of DLST codes with two classes of popular
block codes, the cyclic codes and the linear array codes, as the constituent
code.

Example 2. A popular class of block codes is the Reed-Solomon (RS) code.
Inthis example, a (7, 3) RS code is used as a constituent code of a 7-D DLST
code. The (7, 3) RS encoder maps three 8-ary input digits into seven 8-ary
output digits. Each 8-ary digit sdects a point (symbol) on the 8-PSK constel-
lation according to the Gray code mapping, and these seven constellation
points are used to fill the dots of adiagona of the 7-D DLST code.

The RS code is alinear maximal-distance separable (MDS) code. That is,

the minimum Hamming distance of an (N,K) RS code is
dfi .. = N-K+1.We assart that if the block constituent code is a linear
MDS code, and if the coded digits of a block codeword are individually
mapped to constellation points, al permutations lead to the same minimum
TMEL of @H o (dH i + 1) /72 + dH i (m - n).
Proof: Let us denote the inverse function of o(k) by o~1(k). For any dot
assignment o(k), consider deleting the o=1(0) th, the 6~1(1) th, ..., and the
o~l(aH ;,—1)th digits of every codeword of the RS codebook. The
resulting (K - 1, K) codebook has zero minimum Hamming distance. Due to
linearity, there are at least two all-zero codewords in this new codebook: one
is the result of puncturing the original al-zero codeword, and the other is the
result of puncturing a weight-@f_;, codeword c. When c is transmitted,
Co1(0)* So-1(1)* ***> and Co-l(ah_ _1) fill the dots in the zeroth row to the
(dH ,in - 1) th row, respectively. We have now proved that due to the MDS
property, there is always at least one weight ¢#,;, codeword ¢ whose com-
ponents c__, ©)° So-I(1y’ and c__, @ 1y are nonzero, and the TMEL
between ¢ and the al-zero codeword is (m—n+ 1)+ ... + (m—n+dH ;)
and is an upper bound of the minimum TMEL. On the other hand, because the
minimum Hamming distance is d";, , the minimum TMEL is obvioudy
lower-bounded by (m~n+1)+ ... +(m-n+dH ;). Therefore, the min-
imum TMEL is m-n+1)+...+(m-n+di ;) =
df i@ pin + 1) /24 dH_, (m—n).
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Monte-Carlo simulations are performed to obtain the performance of this
DLST code in dow fading environments with the number of receiving
antennasm = 7. Fig. 5-7(a) shows the average error probability assuming per-
fect decision feedback. Fig. 5-7(b) shows the median number of decision

errors measured in number of diagonals that are triggered by a leading error.
[

To achieve the performance indicated by equation (5-21), the receiver
needs to perform ML decoding over the decison variables corresponding to
the symbols contained in adiagond. Efficient ML decoding algorithm for RS
codes is gtill unknown. Although the codebook of a (7, 3) RS code is small
enough that implementing a brute-force search for ML decoding is till fea
sible, the need for ML decoding motivates us to study block codes for which
there exist efficient ML decoding algorithms.
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Fig. 5-7. Simulation results of the error probability of a 7-D
DLST code using the (7, 3) RS as its constituent code in slow
fading environments. Here, n= m= 7. (a) The average error
probability assuming perfect decision feedback. (b) The
median number of triggered decision errors over channels
conditioned on which the average probability of leading error

P,y is close to the ten-percent outage leading error
probability PO-!
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Example 3. One class of block codes that have compact and regular trellis
representations, which permit the use of efficient trellis-based ML decoding,
isthe linear array codes (LAC) [41].

In this example we consider the following (8,4) LAC over GF(4). For the
encoding, four 4-ary information digits, xy, x5, x3, and x4, are arranged in a

two-by-twomatrix:
X1 X2
x3 x4

For every row and column of this matrix, a parity check digit is generated:
Py =x®xy,py =x3®x,, p3 = x,®x;, adpy = x,®x,. The four
information digits and four parity digits comprise a block codeword c. Gray
code mapping is used to map a4-ary digit to a4-PSK congtellation point. In
contrast to the previous example, here the minimum TMEL of the constructed
DLST code depends on the dot assignment. With n=m = 8, the minimum
TMEL can be as high as 13 and as low as 6, depending on the dot assignment
used. One of the dot assignments that results in the highest minimum TMEL
isshown in Fig. 5-8(a).

Monte-Carlo smulations are performed to obtain the performance of this
DLST code in dow fading environments with m= 8 and the aforementioned
permutation. Fig. 5-8(b) shows the average error probability assuming perfect
decision feedback. Fig. 5-8(c) shows the median number of decison errors
that are triggered by aleading error. |

56 Summary

Space-time codes, which embed redundancy in both the tempora and spa
tial dimensions of the transmitted signal, are channel codes that can be used to
utilize the high channel capacity of dua antenna-array systems, particularly
for systems in which the transmitter does not have the instantaneous channel
date information. In this chapter, we consdered space-time codes whose
throughput scde linearly in n, assuming that n < m. Accompanyingthishigh
throughput, however, is a potentialy very high decoding complexity. With
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codedsymbol | x; | xp | x3 | x4 | Py | P2 | P3 | P4
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Fig. 5-8. Simulation results of the error performance of a 8-D
DLST code using the (8, 4) LAC as its constituent code in
slow fading environments. Here, n=m= 8. (a) One of the
permutations that achieves the largest minimum TMEL. (b)
The average error probability assuming perfect decision
feedback. (c) The median number of triggered decision errors
over channels conditioned on which the average probability
of leading error P,, is close to the ten-percent outage
leading error probability PO1.

ML decoding, the receiver complexity is generally exponentia in n, which
can be unmanageable even for moderate n.

We proposed LST codes which alow for low-complexity decoding. We
first andyzed the performance of LST codes, considering both dow and fast
fading environments as well as both high and low SNR situations. From the
analysis, we found that in dow fading environments DLST codes outperform
HLST codes. We defined the key design parameters — TMEL, TMPD, and
TMED - and formulated the design criteriafor DLST codes.
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We examined the use of convolutional codes and block codes as the con-
stituent codes for DLST codes. With convolutional constituent codes, we
introduced the single-stream structure to greatly improve the reliability of ten-
tative decisons. With block constituent codes, we showed that the dot assign-
ment can result in dramatic differences in performance and thus must aso be
optimized. We formulated the error analysis and design criteriafor these mod-
ified DLST codes. We do provided example DLST codes and simulated their
performances.
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Appendix |: ML Decoding Error Analysis

In this appendix, we present an analysis of the error probability achieved
by ML decoding, using matrix codeword notation.

Let C and E be two distinct space-time codeword matrices. Suppose that
C is the transmitted space-time codeword. Given the channel redlizations H.,
the squared Euclidean distance between the noiseless receptions of Cand E is
dX(C,E|H )= > ]Hr("r - et)|2 . The probahility that the likelihood given
E is transmitted is Higher than that given C is transmitted, conditioned on the
channel realizations, is

Prob(C »>E|H)) = Q( A/z%dz(c,b"li‘l,))
0

(5-22)

< exp{—%(—)dz(a ElHT)}’

where the Chernoff bound @(x) < exp(-x2/2) is applied to form the upper
bound. The average pairwise space-time codeword error probability is
obtained by averaging equation (5-22) over the distribution of H..

In a fast fading environment, we can define y,=H (¢,-e,) and an
mLx1 vector Yby Y=(y,'y, ... y/')'. Note that d*(c,e|H)) = [Y]*.
Because Yis an mL-dimensiond complex Gaussian vector, the eigenvalues of
the covariance matrix of Y completely determines the distribution of |¥]2. The
covariance matrix of Yis thus smply ablock diagonad matrix with the covari-
ance matrices of y, on the diagonal:

E(YYY) = diag(E(y,y,"), EGpy,1), .., EQpy M), (5-23)

because for fast fading H_ are mutually independent. Furthermore, because
the entries of H_ are mutually independent, the covariance matrix of y;isa
diagonal matrix: E(y.y.") = ]cr—erlzlm . Therefore, E(YYT) issmply a
diagona matrix, and its diagona entries are its eigenvalues. Knowing these
elgenvalues, the expected vaue of the right-hand side of (5-22) can be taken
to upper-bound the average pairwise error probability Prob(C — E) by

E \-m

Prob(C - E) < I'If= . [1 +le, - e‘l24—No) . (5-24)
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When analyzing the error performance in dow fading environments, it is
easier to consder the transpose of C, C = (el ¢2 ... ¢™) ,where ¢k isanm-
tuple. Because H_ = H for dl = in dow fading, we can drop the time index
of H and use hy, to denote the kth column of H. The vector Y can be written in
the following form:

Y=(c'-e)®h +(c?-e2)®hy+...+(c"-e")®h,, (525

where ® denotes the Kronecker product.
The eigenvaues of the covariance matrix of Yis

v z {(ck-eb)(c!-e)'} ® (E(hhN)}
k=1l=1

¥ (el -ehe!-ehy @1,
= {(C-E)(C-E}®1,

E(YY")

(5-26)

because E(h k') = 8(k-1)I, . Let Ay denote the nonzero eigenvaues of
the matrix (C-E)(C-E)T, 1<k<rank(C-E). Note that the number of
nonzero eigenvalues, rank(C —E), is upper-bounded by min(L, n). Due to the
property of matrix Kronecker product, A, is an eigenvalue of E(YYT) of
multiplicity m. The average pairwise error probability can be upper-bounded
by using (5-22),

-m

Pmb(c—>E)<H’“"k(C E)(l + A, No) . (5-27)

When (5-24) and (5-27) are compared, we find that the upper bound for the
average pairwise space-time codeword error probablllty between Cand E is
aso the upper bound for the average pairwise codeword error probability
between two 1-D codewords f and g of length rank(C —E), f~8; = Ay
transmitted over a (1, m) system in afast fading environment.
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Appendix I1: Accurate computation of average pairwise
error probability

The Gaussian tail probability function Q(x) is ordinarily defined as

0(x) = J‘::/—;_—exp(—%z) dy. (5-28)
1o

Craigin hiswork [44] showed that the Q-function can be defined (but only for
x20)by

O(x) = 11: Jg/ 2 exp(—-LzzE—) do. (5-29)

In addition to the advantage of having finite integration limits, theformin (5-
29) has the argument of the function x in the integrand rather than in the inte-
gration limits. This latter property can simplify the exact evaluation of proper-
ties of random variables in the form Q(x) wherein x is arandom variable of
some distribution. Many interesting cases have been solved by Simon and
Divsdar [45]. In this chapter, we apply the Chernoff bound,
Q(x) < exp(-x2/2), to approximate the Q-function in order to obtain the
error probability. Here, we focus on the exact evaluation of the average pair-
wise diagonal error probability Prob(c — €) for a DLST code.

The conditional pairwise diagona error probability is specified in (5-10):

n-1
Prob(c > e|H) = Q[ \/% Y |(R;)T(2|c;—e;)2], (5-30)
0r=0

where [(RY) |2, 1=0, 1, ..., n - 1, are independently chi-squared distributed
with 2(m - t) degrees of freedom. The average pairwise error probability is
thus

n-—

oo 1
Prob(c >e) = [|[... fQ( \/% ) |<R:>T\2lc:—e:|2J
00 0 Or=0

d|(R§)o|2a|(R]),|2...d|(Ra= D), _ 4[>

(5-31)
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Using (5-29), (5-31) can be reduced to a single integra with finite limits
asfollows:

n-1
E 2 2
oan [ @ Pl
Prob(c > e) = ex 1=0 40
II I I d 25in20
0y 124l(Rr1y. |2 -1 2
d|(R§)| 24| (R}),|?...d|(RA= D), _ |
_ E —
|72 -0 Zﬁ-l(R:)THc:—eﬂz (5-32)
= 2
=a [ IO Jexe s d|(RQ)|? |0
0 |T=00 sin
B E 2 _(m_T)
2nni gl
T JRTLt sin2@ .
0 LT =0
When the SR is high, ie —<|cT-eZ?»12sin20, (5-32) can be
approximated by 4N,
/2| n-
~1n el E |+ g2\ m-0 . om-1)
PrOb(c - e) = J. l-[ 4N C e‘rt (S1n9) do
T 0 t=0,
T € nlc,e) (5-33)
n/2
=J1 201TMEL ( E \-TMEL
=4{= 0 do (TMPD ,
{n 6[ [sin“0] }( )y i
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decreasing with TMEL. When the SNR is low, (5-32) can be better approxi-
mated instead by

Prob(c > e) ~ 11: |1+ do. (5-34)

0

The same design criteriafor DLST codes can be derived from (5-33) and (5-
34).
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Transmit Diversity

6.1 Introduction

In applications such as cellular mobile radio and fixed wireless loca loop,
antenna arrays are deployed at the base station to combat fading, reject inter-
ference, and achieve higher antenna directionality. As the number of antenna
elements increases, the quality of the reverse link — the transmission from the
user equipment to the base gtation — can become superior to that of the for-
ward link, even though traditionally the forward link signa strength is much
higher than that of the reverse link. Improving the capacity of the forward link
has indeed become the priority in many gpplications.

Unfortunately, there are often congtraints, such as size, codt, or battery
life, which limit the number of antenna elements that can be deployed at the
user equipment. To improve the quality of the forward link, forward transmit
diversity must be effectively utilized. However, whereas techniques to utilize
recelve diversity are well documented, transmit diversity was not aggressively
explored until recently.

The reason that transmit diversity is less straightforward to employ than
receive diversity is that when the number of transmit antennas is greater than
the number of receiving antennas, the spatial dimension of the transmit signal
is greater than that of the recelved sgnd. Thus even when the channel matrix
is of full rank, linear operations at the receiver can no longer separate signals
transmitted by different antennas. In the past, to avoid making the signal
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detection task too difficult, it was common to reduce the spatid dimension of
the transmit signal through decimation. For example, in switched transmit
diversity, only one of the transmit antennas is permitted to transmit at any
giventime. Other transmit diversity techniquesinclude intentional time offset,
frequency offset, phase sweeping, frequency hopping and modulation diver-
sity. Decimation of the spatial degree of the transmitted signal usually results
in forfeiting some of the potentia of transmit diversity.

In the previous chapters, we focused on systems that have more receive
antennas than transmit antennas. In this chapter, we will address the capacity
and efficient signal processing algorithms for the case when the number of
transmit antennas exceeds that of receiving antennas. In fact, many of the dua
antenna array concepts introduced in the previous chapters apply even when
m < n. In this chapter, we will only concentrate on the aspects specific to the
cases where m< n.

In this chapter, we first quickly review the channel capacity and the
optimal signal processing architecture with multiple transmit diversity from
an information-theoretic point-of-view. One particularly interesting result is
that when m = 1, with uniform power alocation, the capacity distribution of
an (n, 1) channel a SNR np isidentical to that of a(1, n) channel a SNR p.
However, effective decoding agorithms to process a transmitted signal with
uniform power alocation are still unknown. We will describe transmission
techniques that directly lead to an input-output formulation that is similar to
that of a(1, n) receive diversity system with maximal ratio combining. These
techniques are very dtractive because they greatly simplify the receiver task,
inasmuch as they cannot always achieve channel capacity. An additional
advantage is that they do not require a complete redesign of existing systems
and thus they are well suited for upgrading their quality.

The remainder of this chapter is organized as follows. In chapter 6.2, we
review the channel capacity of dual antenna-array systems. In particular, we
will focuson m = 1. In chapter 6.3, we examine a smple method applicable
to any (n= 2, m) channel that indeed achieves the channel capacity with uni-
form power dlocation. In chapter 6.4, we introduce the generdization of this
techniqueto n> 2. We give the summary in chapter 6.5.
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6.2 Channel capacity when the number of transmit antennas
exceeds the number of receive antennas

As we have mentioned in chapter 3.3, the channel capacity of an (n, m)
channel given the channel realization H subject to an average normalized
transmitter power constraint is

C= tr(;.]f;xs 0 log,[det (1 + HZSHT )] (bits per channel use). (6-1)

Denote the singular value decomposition of the channel matrix H be
H = UyDyVy". When the transmitter has CSl, the input that achieves the
channel capacity is a zero-mean complex Gaussian vector with autocovari-
ance matrix V4DV, ". The channel capacity is

Copt = ZZ”: log, (1 +Dke?), (6-2)

where e,% is a nonzero eigenvalue of HHT and the nonnegative diagonal
matrix D is the one that maximizes the right-hand side of (6-2) subject to the
congraint that ¢r(D) < p . The upper summation limit is m because m<n.

When uniform power alocation is employed, the maximum mutual infor-
mation is

Coni = X _ llogz(l + 55,3). (6-3)

The case when m = 1 is of particular interest to applications involving
compact user termina equipment. When m = 1, the channel capacities given
CSl a the transmitter and the channel capacity with uniform power alocation
ae Cy, = logy(1+pHHT) and C,,; = log,(1 +(p/n)HH'), respec-
tively. It is interesting to see that with optimal power allocation the required
transmit power to achieve a certain channel capacity is 10logn dB lower than
that with uniform power allocation.

One of the most straightforward ways of utilizing transmit diversity is to
have the transmitting antennas sending their signals in turn. The average
channel capacity under thistechnique is
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sw1tch Zk 10g2(1 + p'Hkl 2) 4 (6-4)

where H, isthe channel gain associated with the kth transmitting antenna ele-
ment. Due to the concave property of the logarithmicfunction, C,,; isaways
greater than or equal t0 Cyyitch:

1
Cowitch = ;25 = 1 10821+ p|HY)

(6-5)
ZZ =1 I+ p|H kl
< logz = Cuni.

n

A additiona disadvantage of switched transmit diversity is that antennas need
to be turned on and off. This complicates the design of output amplifiers due
to the high peak-to-average requirement.

Another popular transmit diversity technique is select transmit diversity,
wherein the transmitter activates only the antenna element that has the highest
gain. The capacity with this scheme is

Cselect = loga(1+p- m,?x (lHk‘z)) . (6-6)

Clearly, Ceeject IS greater than Cyyp; but lower than Cyy.

Table 6-1 compares the four transmit diversity techniques described
above. Obvioudy, if complete CSl is available, the transmitter can use the
optimal scheme to achieve Cyy. If the phase information of the channel gain
is not available but the amplitude information is, select diversity is desirable.
Otherwise, the transmitter should seek to achieve Cyy;.

6.3 Transmit diversity equals two

In this section, we will describe a transmission diversity technique first
proposed by Alamouti [46]. This technique is can effectively achieve Cy,; and
is applicable to any (n = 2, m) channel with no CS available at the trans-
mitter, as long as the channel does not vary at a rate comparable to the baud

Team LRN



Transmit Diversity 107

CSI available to the Transmission Corresponding
transmitter technique channel capacity
‘ofthechamelgun | allosaon | 198201+ PXL_ A
amplitude only trinelsgi:t;ttls;a log2(1 + SZZ -1 | Hkl 2)
unavailable un;fi(;g:agg;ver log,(1+p- ml?x (|H k| 2y)

Table 6-1: The appropriate transmit diversity technique and
the corresponding channel capacity for systems with different
types of CSl available at the transmitter.

rate. We will focus on the case where m = 1. Later we will show that generali-
zationto m> 1 isstraightforward. The major benefit of this algorithm isthat it
achieves Cy,; with avery simple encoding/decoding process. Therefore, it is
well suited for the next generation cellular radio standard.

The encoding process is as follows. Immediately before timet, 1 =0, 2, 4,
.., two symbols s and s} arrive at the transmitter. The transmitter sends s?
to transmit antenna 0 and s} to transmit antenna 1, respectively. At the next
time ingtance, i.e. t=1,3, 5, ..., no data arrives at the transmitter. The trans-
mitter sends —s!* and s!* to transmit antenna O and transmit antenna 1,

respectively. !
The input-output relationship of the channdl at timer andt+ 1 is
o

St

0

1

S
A R T | I T B P S S O
Fr41 0 0 kg hy _s‘ll'* Y4l

O
T

|5t

Equation (6-7) can be rearranged as
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o T, (6-8)
v1+1*

hy h
where H = 0 T
_hl* ho*

Note that the columns of the matrix H are orthogonal to each other. To
detect the transmitted symbol, the receiver simply left-multiplies [’r reot® '
by HT:

| T || | < el 0 e nr}(s-m
r‘l’+1* y‘l‘+1 0 \h0l2+'h1‘2 s n1+1

This simple operation is akin to maximal-ratio combining. In (6-9), n, and
Moot @€ 10.d. N(O,|hg|2+]|hy|?). After normalization, equation (6-9)
describes a SISO channel with channel power gain [hg|2 + |,|2. If Ag and
are independent N(0, 1), |h0|2+ |h1]2 is chi-squared distributed with four
degrees of freedom.

A Ao

Under this transmit diversity scheme, given the channel gains hy and A,
the channel capacity is

C = 1og(1 +(|h0|2+|h1|2)5). (6-10)
Thisisexactly equal to C,;, given by (6-3).

6.4 Transmit diversity greater than two
To extend the technique in chapter 6.3 toan (n>2, m=1) system, one

solution is to apply orthogona designs [47]. The theory of orthogona design
is beyond the scope of this book. In the following, we will introduce this con-
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cept using asimple example. The work of Tarokh et. al [47] is recommended
to interested readers. First, we introduce the concept of orthogonal design.

Definition. A generalized orthogonal design Gof Szen and rate R = k/p is
ap x n matrix with entries 0, +x,, *x,, ..., tx, suchthat GG =D where D
is a diagonal matrix with diagona Dy i = 1, 2, ..., n, in the form
(L xy|2 + B |xg) 2 + ... + 1L} x| %) . The coefficients are positive integers.

It is shown that, without loss of generality, one can consider only p xn
generdlized orthogonal designs G in variables x, x,, ..., x; that satisfy
GTG = ()| +|xy2 + ... +|x DI

An example of generalized complex orthogonal design with rate
R=1/21is

G = . (6-11)

Lk * oy %
X% X X4

_x3* x4* xl*

—x. X —x kK

Transmission Scheme. Consider a system with n transmitting antennas and 1
receiving antenna. The encoder first decides on an appropriate rale R =k / p
such that a complex generaized orthogonal design of size n, i.e. a pxn
matrix G using k independent symbol, exists. Immediately before t=0,
symbols xy, x5, ..., x; arrive at the encoder. The transmitter forms the complex
generalized orthogonal design G using these k input symbols. Duringtime t =
1,2, ..., p— 1, transmit antenna j transmitsthe (z+1)-th row, jth column entry
of G. The receiver, upon reception of signals ry, ry, ..., r,, performs a linear,
matched filtering-like processing to obtain interference-free observations of
X1s X5 eovs X
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We will illugtrate this scheme using an example. Suppose that n = 3 and
that the complex generalized orthogona design in (6-11) with p = 8 and
k = 4 is employed. Denote the channel (complex) gain from transmitting
antenna 1, 2, 3 to the receiving antennaby «, B, and y. The received sgnds,

ro, r], veey rq, are rO = [a B ’Y:l [xl x2 X '+v03
ry = [a B Y] [_xz X _x4:|'+v0, vy Fq = I:a B YJ —xg* —xy* xy* "+vq,
respectively.

Define the following vectors.

r= [ro ryryr3rg* st re* r7*]' ’
— '

X = [xO xl ens xk_]} ’alld

= R TR L
4 I:VO V] vy V3 V¥ ve* v v7:|

It can be easily verified that

r = Hx+v, (6-12)
where
r 7
a B y O
p —a 0 -y
y 0 —a B
H=|% v P o (6-13)
a* B* y* 0
B* _a* O _ly*
Y 0 -a* B*
[0 v+ ¥ o

Note that the columns of H are orthogonal to each other. More specificaly,
HH' = 2(|al2 +|B|2 +y1?)1,. Because of this property, the receiver can
pre-multiply r by HT to obtain the individua interference-free observations
of the transmitted symbols. That is,
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yJ Xol Mo
y X n
Hir = 1 = 232+ B2+ D[] + 1], (6-14)
3%) ) N2
3 *3] M3

where n, k = 0, 1,2, 3, aeiid. N, 2(lal? +1BI2 + y2)) . Writing (6-14)
componentwise, we have

y; = 2(lal2 + B2+ [y 2)x, + m,. (6-15)

The dgna-to-noise ratio of each symbol observation y; is
2(lal? + 1Bl + [y|®)p/n.

Equation (6-14) is identicd to the describes a (1, n) system in which a
rate-(1 /2) repetition code and maximal ratio combining is employed. In gen-
eral, when ageneralized complex orthogonal design of rate R is employed, the
channel capacity with thistechnique is

Rlog2(1 T |Hk|2) : (6-16)

The existence of a generdized complex orthogona design is key to this
technique. It has been shown that complex generalized orthogonal design
exissswhenever R<0.5.

6.5 Summary

In this chapter we presented theories and a gorithms for channels in which
the number of transmitting antennas is higher than the number of receiving
antennas.

When the transmitter has the full CSl, it can employ optimal power alo-
cation. In this scenario, the transmitted vector is the linear combination of m
orthornormal vectors.
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When the transmitter knows only the amplitude gains from the transmit-
ting antenna elements to the single receiving antenna element, a good strategy
is to transmit only from the antenna with the highest amplitude gain.

If the transmitter is completely unaware of the channel conditions, uni-
form power alocation achieves a capacity that is identical to the capacity of a
(1, n) channel with a power penalty of 10log,,» dB. We described an effec-
tive technique that achieves this capacity when n = 2. It is possible to extend
this technique to channels with n > 2 using generalized complex orthogona
design. With this technique, the (n, 1) channel is transformed into an equiva-
lent (I, n) channel with a rate R repetition code and a power penaty of
10log,yn dB.
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Open Issues

7.1 Introduction

In this book we have discussed a few facets of dual antenna-array sys-
tems. We have examined the distribution of channel capacity for atypical out-
door base station-subscriber unit link, the performance and applicability of
various power allocation strategies, and space-time codes and their design cri-
teria

Nonetheless, there are still many open issues that must be resolved before
there is a complete dual antenna-array solution. In this chapter, we identify a
few key aress that warrant further research and development. What follows is
by no means acomplete ligt.

7.2 Further Understanding of Channel Statistics

In this book, we have largely focused on quasi-static channels using a
model approach. “One-ring” and “two-ring” models are proposed to investi-
gate the spatial fading correlation, assuming that the channel stays constant
over aburst transmission period and that the bandwidth is narrow. The “one-
ring” model is appropriate in situations where one end of the wireless link is
elevated and unobstructed by local scatterers and the other end is surrounded
by local scatterers, while the “two-ring” model is appropriate in describing
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peer-to-peer systems in which local scatterers are present at both ends of the
link. We have assumed Rayleigh fading throughput; generalizing our method-
ology to both Rician and Nakagami fading is not difficult.

We have chosen the one- and two-ring models because they represent two
prototypical radio environments. When a more precise description of the
channel datistics in a particular environment is desired, one must employ a
channel model that istailored for the specific environment [19]. Such a model
should, of course, be validated through experimental measurements.

In this book, we did not address the fading correlation for wideband, time-
varying channels. Specifically, denote the channel gain between transmitting
antenna TA; and receiving antenna RA; a frequency f; and time t; by
h(TA,, RA, f,, ‘cj). A full description of channel fading correlation is to
specify E[h(TAkl,RA,l,fil,r.l)h(TAkz, RAlz,fiz, ’tjz)T]. This information
will be necessary in designing and evaluating the performance of space-time
channel codes in many practical applications.

7.3 Acquisition and Tracking of Channel State
Information

We have shown that in order to realize the potential of dual antenna-array
systems, the receiver must be able to measure and track the channel. Compu-
tationally efficient schemes for estimating and tracking a channel matrix that
has nm entries are desirable.

Transmitted reference techniques usually provide the simplest method for
CSl edtimation. Common transmitted reference techniques are tone-cdibra-
tion techniques and pilot symbol-assisted modulation. Both can be modified
to accommodate dua antenna arrays [36].

It can sometimes be desirable to directly track certain attributes of the
channel other than the channel matrix H. For example, a mentioned in
chapter 3, the optimal transmit basis can be used at the transmitter to trans-
form the MIMO channel into parallel SISO subchannels. To apply the optimal
transmit basis, the singular value decomposition of the channel matrix, i.e,
H = UyD,V,", must be known. Asthe channel changes, it is computation-
aly inefficient to track H and continually recompute the singular value
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decomposition, and a better solution is to track the matrices Uy, Dy, and
v, T
H -

7.4 Signal Processing Techniques

Chapter 4 discussed the performance of dua antenna-array systems with
optimum, uniform, and stochastic water-filling power-alocation srategies in
both independent and correlated fading environments. Optimum power alo-
cation achieves the highest capacity and the lowest receiver complexity, but it
alocates unequal power, and hence assigns unequal throughput, to the sub-
channels. When using one of the other two power-alocation sStrategies, it is
often desirable to one-dimensiondize the MIMO channel into a s#t of parale
SISO subchannels. This reduces the receiver complexity, and typically incurs
only a smal capacity penaty. The communication rates over these paralel
SISO subchannels are unequal .

When there is a significant degree of inequality between subchannel
throughputs, for each subchannel it is necessary to employ a subchannel-spe-
cific modulation format and channel coding scheme. In particular, to apply
optimum power dlocation over time-varying channels, the modulation for-
mats and channel coding schemes on the subchannels must be updated to
reflect the changes in channel conditions.

7.5 Network |ssues

Consider a “benchmark” cellular system in which both the base stations
and the subscriber units have only one antenna element. By installing n-ele-
ment smart antennas at the base station Sites while continuing to use only one
antenna element a each subscriber unit, the Erlang capacity, or user density
per cell, of this* smart antenna-enhanced” system can be increased by approx-
imately a factor of n, as a result of the interference suppression and beam-
forming capahilities of the antenna array.

Inthis book, the focus is on a single user-to-single user link with antenna
arrays a both ends. We have demonstrated that the channel capacity of an
(n, n) link is approximately n times higher than that of a (1, n) link assuming
independent fading. If al the base dations and subscriber units are al
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upgraded to use n-element antenna arrays, however, the supported user den-
gty does not exhibit an n-fold increase over the smart antenna-enhanced
system described in the previous paragraph.

To further understand this apparent paradox, consider the following time-
division multiple access scheme. There are n subscribers in a cell, and the
base station spends an equal amount of time serving each subscriber. Note that
no more than two subscribers can be served a the same time because the
available spatial degrees of freedom of an entire n-element antenna array must
be dedicated to one base station-to-subscriber unit link. It is easy to see that in
this scenario each subscriber receives a throughput slightly better than that in
the benchmark cellular system. So is there any significant advantage of
ingtalling n-element antenna arrays a the subscriber units, other than the
antenna gain?

The answer lies in the fact that, with dual antenna arrays, the pesk
throughput of any base station-subscriber unit link is approximately n times
higher than that in the “benchmark” system. This is a great advantage if the
traffic pattern over the network is bursty, which is often the case in packet
data networks. By activating a BS-SU link only when it is required, the
response time (delay) of the system can be reduced significantly. To take
advantage of this flexible throughput-allocation property, the air interface
must be designed with this in mind. In contrast, in a smart antenna-enhanced
system, even when there is only one subscriber present in a cell, the peak link
throughput cannot be made n times higher than that of a (1, 1) link.

7.6 Distributed BS Antenna Scheme

Throughout this book, we have implicitly assumed that the antenna ele-
ments belonging to an “antenna array” are located in relative proximity. In
chapter 3, the “one-ring” model is used to study the physical separation
required between the BS antenna dements to achieve low fading correlation.
As arule of thumb, the larger the separation, the lower the fading correlation.
However, if most of the received energy comes through a dominant line-of-
sight path between the two antenna arrays, the channel capacity is dominated
by this line-of-sight path and does not exhibit a linear growth with respect to
the number of antennaelements at areasonable SNR.
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Fig. 7-1. An user with a six-element antenna arrays
communicates with six base stations that are far apart from
each other.

What happens if the antenna el ements are not placed in close proximity to
each other? Fig. 7-1 shows an interesting scenario in which a user communi-
cates with six antennas that are placed far apart from each other. In fact, one
may find similarity between the scenario shown in Fig. 7-1 with the so-cdled
“soft hand-off” scheme.

It has been shown [23] that in a scenario like Fig. 7-1, the correlation
between any two channel fades associated with different distributed BS
antenna elements is likely to be low, regardless of whether dominant line-of-
sght paths exist between the user antenna array and the distributed BS
antennas. Therefore, the probability is high that the channel supports
min(n, m) active spatial modes, with or without fading!

The chalenge of operating such a system is obvious. Because the
received signal at different distributed sites must bejointly processed, the six
base stations must be precisely coordinated. This would require a high-band-
width communication channel between the controlling entity and the six base
dations.
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7.7 Space-Time Codes

In chapter 5, we presented afamily of codes constructed based on the lay-
ered space-time architecture. This particular family of space-time codes can
be decoded with a complexity that is only quadratic with the number of
antenna elements.

Other high-throughput, low-complexity space-time codes are expected to
appear in the near future. One approach that can improve the performance of
DLST codes is to utilize an iterative decoding procedure. Iterative decoding
for channel codes has received tremendous attention in the communications
community recently. Iterative decoding often achieves performance close to
the optimal decoding technique, while providing the advantage of greetly
reduced complexity. Therefore, it is very attractive for decoding applications
of otherwise intractable complexity, such asturbo codes [42].

Some preliminary results [49] indicate that iterative decoding of DLST
codes indeed provides a performance improvement over the original hard
decision-feedback, diagonal-by-diagona decoding architecture.
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